Lightweight Projective Derivative
Codes for Compressed
Asynchronous Gradient Descent

Pedro Soto, llia limer, Haibin Guan, Jun L

Presented at ICML 2022

Distributed Gradient Descent
“-M QM
4

&

o f p Vi (0) / Vi (6) Vi, ()

W W Wy W W
D 1 D) D n D 1 D) D T

» The task V£ /,(0) is too large to do on machine M so it partitions the job into some
smaller tasks f,(0) = VI[,(0), .. .,[.(0) = V[(0) and distributes it amongst the workers.

» Unlike other forms of distributed computing, the data being sent to the workers; i.e., 0, is
the same.

Distributed Gradient Descent

Q.\ M Q\ M

?
f f f Vi, (6)
- W, W,
D 1 D i D n D 1 D) D n

 The overall job can only be completed as fast as the slowest worker

* One solution is to use linear coding techniques

Gradient Coding

s g8 e8 se g8 e8

* A small example of a gradient code [Tandon et al. 17] where the master desires the

computation of f(0) = VI[,(0) + V,(0) + V 5(0)

» The current assignment creates a [2,]] code since any two workers can recreate
the task of the third

 For example, if the second worker becomes a straggler, then the task can be
recreated by computing f(0) =f, + f; at M

Asynchronous Distributed Gradient Descent

= = S = = S

* |[n Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the
update before waiting for all workers to return

* |n particular, for K-Asynchronous Distributed Gradient Descent the master performs the
update every time that k workers return

 The workers may have different models at any given moment

Asynchronous Distributed Gradient Descent

P g
% g

V[/'1 I/Vz Wn V[/'1 ‘/Vz
s S S S S
D 1 D % D n D 1 l)2

* |[n Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the
update before waiting for all workers to return

* |n particular, for K-Asynchronous Distributed Gradient Descent the master performs the
update every time that k workers return

 The workers may have different models at any given moment

Asynchronous Distributed Gradient Descent

= = S S

* |[n Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the
update before waiting for all workers to return

* |n particular, for K-Asynchronous Distributed Gradient Descent the master performs the
update every time that k workers return

 The workers may have different models at any given moment

The LWPD Code ¢¢:+2

0
= the derivative of the first half of the output 0
00, 0
nodes with respect to the first half of the dataset'’, 0 1
; S R
—— = the derivative of the second half of the 04 E
00, 3
output nodes with respect to the first half of the 0o O
dataset'’, -
Oy 0
J . . i
% = the derivative of the first half of the output @ 4 O
2
nodes with respect to the second half of the 55 O
dataset'', and 1
é’ 1
o .. ° | V2
—— = the derivative of the second half of the ~ 1
06 7 LT

output nodes with respect to the second half of
the dataset''.

.

o ofli © o4

o o 5l-5lsl- o o8

-0 of

N

SI=N- © ©

Parameter Compression

The different ways to partition the

backpropagation gradient.

The first partition shows how to

partition the gradient for a simple
neural network with no hidden nodes.

The two other partition corresponds to
a more general deep-neural network

with hidden nodes.

The last partition depicts the recursive

construction for larger n

Wo,0
L) € Yo
NUO,I U()
w10
L1 < Y1
W11
0 1
W0 p Wo,0
L€ "0 <0 1 Yo
\0,1 \0,1
0 1
/Ul,o\\ AI,O
- > .
L1 < 0 <1 — Y1
1,1 1,1
0 1
W0 p Wo,0
Lo € 0 <0 1 Yo
\0,1 \0,1
0 \ /1
AI,O \ W10
< - < =
L1 0 21 1 Y1
1.1 1.1

Contributions

 The main contribution of this work is to construct a gradient coding scheme that is
asynchronous

e In particular, not all the information is needed to decode
* Previous works have considered both separately but not simultaneously

* Jo achieve this we construct the code so that it can be iteratively decoded

e |If the code has rank k we can update the gradient with less than k workers

 \We can further lower communication complexity by compressing the partial
gradients sent back to the master

* A theoretical contribution is to come up with the correct definition of distance
between code-words that maximizes information returned by subsets of coded
gradients

Comparison of Main Algorithms

CODE ENCODING COMMUNICATION DECODING
SCHEME COMPLEXITY COMPLEXITY COMPLEXITY
LPDC 0 O(%) 0

GC O(nk) O(k) O(k“) < O(k*)
K-AC 0 O(k) 0

CODE WEIGHT ASYNCHRONOUS PARAMETER
SCHEME RANGE ? COMPRESSION?
LPDC te 2,7 v v/

GC t=n—k+1 X X

K-AC t e [1,n] v X

 (LPDC) Lightweight Projective Derivative Codes
 GC) Gradient Coding \cite{pmlr-v70-tandon17a}

¢ (K-AC) K-Asynchronous Gradient Descent

0.70 -
— GC
— K-AC
0.65 1 — LWPD
« 0.60 -
o
ad
(&)
£
= 0.55 1
&
0.50 A
0.45 -
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Running Time(s)
{Ir=0.01; n_worker=8; n_classes=4}
0.280 A K-AC
— LWPD
0.275 A
0.270 A
0
Q
— 0.265 -
(&)
=
3 0.260 -
0.255 A
0.250 A
0 25 50 75 100 125 150 175

Running Time(s)
{Ir=0.005; n_worker=8; n_classes=4}

Experimental Results

Testing Loss

Running Time(s)

{Ir=0.005; n_worker=16; n_classes=4}

— GC
0.68 - (AC
- LWPD
0.66 -
wn
n
O
-
2 0.64 -
0
|g
0.62 -
0.60 -
0 1 2 3 4 5 6 7
Running Time(s)
{Ir=0.01; n_worker=16; n_classes=4}
0.40 - — K-AC
— LWPD
0.38 -
2 0.36 -
-
o
=
£ 0.34 A
@
0.32 -
0.30 A
0 10 20 30 40 50 60 70 80

0.68 A

Testing Loss
o o
(@) (o)}
IS o
1 1

o

(o))

N
I

0.60 -

0 5 10 15 20 25 30 35

Running Time(s)
{Ir=0.01; n_worker=32; n_classes=4}

0.40 A e K-AC

0.38 - — LWPD
0.36 A1
0.34 A
0.32 A
0.30 -
0.28 A

0.26 A

0.24 -

I L 1 l '

0 20 40 60 80

Running Time(s)
{Ir=0.01; n_worker=32; n_classes=4}

100 120

References

» [Tandon et al. 17] Rashish Tandon et al. “Gradient Coding: Avoiding
Stragglers in Distributed Learning”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning. Ed. by Doina Precup and Yee
Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
June 2017, pp. 3368-3376. URL: https : //proceedings.mlr.press/v70/

tandoni7a.html.

e [Dutta 21] Sanghamitra Dutta et al. “Slow and Stale Gradients Can Win the
Race”. In: IEEE Journal on Selected Areas in Information Theory 2 (2021),

op. 1012-1024.

