Lightweight Projective Derivative Codes for Compressed Asynchronous Gradient Descent

Pedro Soto, Ilia Ilmer, Haibin Guan, Jun Li

Presented at ICML 2022

Distributed Gradient Descent

- The task $\nabla \mathscr{L}_D(\theta)$ is too large to do on machine M so it partitions the job into some smaller tasks $f_1(\theta) = \nabla l_1(\theta), \dots, f_k(\theta) = \nabla l_k(\theta)$ and distributes it amongst the workers.
- Unlike other forms of distributed computing, the data being sent to the workers; *i.e.*, θ , is the same.

Distributed Gradient Descent

- The overall job can only be completed as fast as the slowest worker
- One solution is to use linear coding techniques

- A small example of a gradient code [Tandon et al. 17] where the master desires the computation of $f(\theta) = \nabla l_1(\theta) + \nabla l_2(\theta) + \nabla l_3(\theta)$
- The current assignment creates a $\left[2,1\right]$ code since any two workers can recreate the task of the third
- For example, if the second worker becomes a straggler, then the task can be recreated by computing $f(\theta)=f_1+f_3$ at M

Asynchronous Distributed Gradient Descent

- In Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the update before waiting for all workers to return
- In particular, for K-Asynchronous Distributed Gradient Descent the master performs the update every time that k workers return
- The workers may have different models at any given moment

Asynchronous Distributed Gradient Descent

- In Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the update before waiting for all workers to return
- In particular, for K-Asynchronous Distributed Gradient Descent the master performs the update every time that k workers return
- The workers may have different models at any given moment

Asynchronous Distributed Gradient Descent

- In Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the update before waiting for all workers to return
- In particular, for K-Asynchronous Distributed Gradient Descent the master performs the update every time that k workers return
- The workers may have different models at any given moment

The LWPD Code $\mathscr{C}^{(8,4,2)}$

 $ilde{ heta}_0$

 $ilde{ heta}_1$

 $ilde{ heta}_2$

 $\tilde{\theta}_3$

 $\tilde{\theta}_{4}$

 $ilde{ heta}_5$

 $ilde{ heta}_6$

 $ilde{ heta}_{7}$

- $\frac{\partial}{\partial \theta_0}$ = "the derivative of the first half of the output nodes with respect to the first half of the dataset",
- $\frac{\partial}{\partial \theta_1}$ = "the derivative of the second half of the output nodes with respect to the first half of the dataset",
- $\frac{\partial}{\partial \theta_2}$ = "the derivative of the first half of the output nodes with respect to the second half of the dataset", and
- $\frac{\partial}{\partial \theta_3}$ = "the derivative of the second half of the output nodes with respect to the second half of the dataset".

Parameter Compression

- The different ways to partition the backpropagation gradient.
- The first partition shows how to partition the gradient for a simple neural network with no hidden nodes.
- The two other partition corresponds to a more general deep-neural network with hidden nodes.
- The last partition depicts the recursive construction for larger *n*

Contributions

- The main contribution of this work is to construct a gradient coding scheme that is asynchronous
 - In particular, not all the information is needed to decode
 - Previous works have considered both separately but not simultaneously
 - To achieve this we construct the code so that it can be iteratively decoded
 - If the code has rank k we can update the gradient with less than k workers
- We can further lower communication complexity by compressing the partial gradients sent back to the master
- A theoretical contribution is to come up with the correct definition of distance between code-words that maximizes information returned by subsets of coded gradients

Comparison of Main Algorithms

CODE	ENCODING	COMMUNICATION	DECODING
SCHEME	COMPLEXITY	COMPLEXITY	COMPLEXITY
LPDC	0	$\mathcal{O}(\frac{k}{t})$	0
GC	$\mathcal{O}(nk)$	$\mathcal{O}(k)$	$\mathcal{O}(k^{\omega}) \leq \mathcal{O}(k^{2.38})$
K-AC	0	$\mathcal{O}(k)$	0

CODE	WEIGHT	Asynchronous	PARAMETER
SCHEME	RANGE	?	COMPRESSION?
LPDC	$t \in [2, \frac{n}{4}]$	\checkmark	\checkmark
GC	t = n - k + 1	×	\times
K-AC	<i>t</i> ∈ [1, <i>n</i>]	\checkmark	×

- (LPDC) Lightweight Projective Derivative Codes
- GC) Gradient Coding \cite{pmlr-v70-tandon17a}
- (K-AC) \$K\$-Asynchronous Gradient Descent

Experimental Results

References

- [Tandon et al. 17] Rashish Tandon et al. "Gradient Coding: Avoiding Stragglers in Distributed Learning". In: Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017, pp. 3368–3376. URL: https://proceedings.mlr.press/v70/tandon17a.html.
- [Dutta 21] Sanghamitra Dutta et al. "Slow and Stale Gradients Can Win the Race". In: IEEE Journal on Selected Areas in Information Theory 2 (2021), pp. 1012–1024.