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Distributed Gradient Descent
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» The task V£ /,(0) is too large to do on machine M so it partitions the job into some
smaller tasks f,(0) = VI[,(0), .. .,[.(0) = V[ (0) and distributes it amongst the workers.

» Unlike other forms of distributed computing, the data being sent to the workers; i.e., 0, is
the same.
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 The overall job can only be completed as fast as the slowest worker

* One solution is to use linear coding techniques



Gradient Coding
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* A small example of a gradient code [Tandon et al. 17] where the master desires the

computation of f(0) = VI[,(0) + V,(0) + V 5(0)

» The current assignment creates a [2,] ] code since any two workers can recreate
the task of the third

 For example, if the second worker becomes a straggler, then the task can be
recreated by computing f(0) =f, + f; at M



Asynchronous Distributed Gradient Descent
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* |[n Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the
update before waiting for all workers to return

* |n particular, for K-Asynchronous Distributed Gradient Descent the master performs the
update every time that k workers return

 The workers may have different models at any given moment
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Parameter Compression

The different ways to partition the

backpropagation gradient.

The first partition shows how to

partition the gradient for a simple
neural network with no hidden nodes.

The two other partition corresponds to
a more general deep-neural network

with hidden nodes.

The last partition depicts the recursive

construction for larger n
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Contributions

 The main contribution of this work is to construct a gradient coding scheme that is
asynchronous

e In particular, not all the information is needed to decode
* Previous works have considered both separately but not simultaneously

* Jo achieve this we construct the code so that it can be iteratively decoded

e |If the code has rank k we can update the gradient with less than k workers

 \We can further lower communication complexity by compressing the partial
gradients sent back to the master

* A theoretical contribution is to come up with the correct definition of distance
between code-words that maximizes information returned by subsets of coded
gradients



Comparison of Main Algorithms

CODE ENCODING COMMUNICATION DECODING
SCHEME COMPLEXITY COMPLEXITY COMPLEXITY
LPDC 0 O(%) 0

GC O(nk) O(k) O(k“) < O(k*)
K-AC 0 O(k) 0

CODE WEIGHT ASYNCHRONOUS PARAMETER
SCHEME RANGE ? COMPRESSION?
LPDC te 2,7 v v/

GC t=n—k+1 X X

K-AC t e [1,n] v X

 (LPDC) Lightweight Projective Derivative Codes
 GC) Gradient Coding \cite{pmlr-v70-tandon17a}

¢ (K-AC) $K$-Asynchronous Gradient Descent
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