
Lightweight Projective Derivative
Codes for Compressed

Asynchronous Gradient Descent
Pedro Soto, Ilia Ilmer, Haibin Guan, Jun Li

Presented at ICML 2022

Distributed Gradient Descent

• The task is too large to do on machine so it partitions the job into some
smaller tasks and distributes it amongst the workers.

• Unlike other forms of distributed computing, the data being sent to the workers; i.e., , is
the same.

∇ℒD(θ) M
f1(θ) = ∇l1(θ), . . . , fk(θ) = ∇lk(θ)

θ

Distributed Gradient Descent

• The overall job can only be completed as fast as the slowest worker

• One solution is to use linear coding techniques

Gradient Coding

• A small example of a gradient code [Tandon et al. 17] where the master desires the
computation of

• The current assignment creates a code since any two workers can recreate
the task of the third

• For example, if the second worker becomes a straggler, then the task can be
recreated by computing at

f(θ) = ∇l1(θ) + ∇l2(θ) + ∇l3(θ)

[2,1]

f(θ) = f1 + f3 M

Asynchronous Distributed Gradient Descent

• In Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the
update before waiting for all workers to return

• In particular, for K-Asynchronous Distributed Gradient Descent the master performs the
update every time that workers return

• The workers may have different models at any given moment

k

Asynchronous Distributed Gradient Descent

• In Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the
update before waiting for all workers to return

• In particular, for K-Asynchronous Distributed Gradient Descent the master performs the
update every time that workers return

• The workers may have different models at any given moment

k

Asynchronous Distributed Gradient Descent

• In Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the
update before waiting for all workers to return

• In particular, for K-Asynchronous Distributed Gradient Descent the master performs the
update every time that workers return

• The workers may have different models at any given moment

k

The LWPD Code 𝒞(8,4,2)

• = ``the derivative of the first half of the output

nodes with respect to the first half of the dataset'',

• ``the derivative of the second half of the

output nodes with respect to the first half of the
dataset'',

• ``the derivative of the first half of the output

nodes with respect to the second half of the
dataset'', and

• ``the derivative of the second half of the

output nodes with respect to the second half of
the dataset''.

∂
∂θ0

∂
∂θ1

=

∂
∂θ2

=

∂
∂θ3

=

Parameter Compression

• The different ways to partition the
backpropagation gradient.

• The first partition shows how to
partition the gradient for a simple
neural network with no hidden nodes.

• The two other partition corresponds to
a more general deep-neural network
with hidden nodes.

• The last partition depicts the recursive
construction for larger n

Contributions
• The main contribution of this work is to construct a gradient coding scheme that is

asynchronous

• In particular, not all the information is needed to decode

• Previous works have considered both separately but not simultaneously

• To achieve this we construct the code so that it can be iteratively decoded

• If the code has rank we can update the gradient with less than workers

• We can further lower communication complexity by compressing the partial
gradients sent back to the master

• A theoretical contribution is to come up with the correct definition of distance
between code-words that maximizes information returned by subsets of coded
gradients

k k

Comparison of Main Algorithms

• (LPDC) Lightweight Projective Derivative Codes

• GC) Gradient Coding \cite{pmlr-v70-tandon17a}

• (K-AC) K-Asynchronous Gradient Descent

Experimental Results

References

• [Tandon et al. 17] Rashish Tandon et al. “Gradient Coding: Avoiding
Stragglers in Distributed Learning”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning. Ed. by Doina Precup and Yee
Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
June 2017, pp. 3368–3376. URL: https : //proceedings.mlr.press/v70/
tandon17a.html.

• [Dutta 21] Sanghamitra Dutta et al. “Slow and Stale Gradients Can Win the
Race”. In: IEEE Journal on Selected Areas in Information Theory 2 (2021),
pp. 1012–1024.

