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Distributed Gradient Descent

• The task  is too large to do on machine  so it partitions the job into some 
smaller tasks  and distributes it amongst the workers. 


•  Unlike other forms of distributed computing, the data being sent to the workers; i.e., , is 
the same.

∇ℒD(θ) M
f1(θ) = ∇l1(θ), . . . , fk(θ) = ∇lk(θ)
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Distributed Gradient Descent

• The overall job can only be completed as fast as the slowest worker 


• One solution is to use linear coding techniques



Gradient Coding

• A small example of a gradient code [Tandon et al. 17] where the master desires the 
computation of 


• The current assignment creates a  code since any two workers can recreate 
the task of the third


• For example, if the second worker becomes a straggler, then the task can be 
recreated by  computing  at 

f(θ) = ∇l1(θ) + ∇l2(θ) + ∇l3(θ)

[2,1]

f(θ) = f1 + f3 M



Asynchronous Distributed Gradient Descent

• In Asynchronous Distributed Gradient Descent [Dutta et al. 2021], the master performs the 
update before waiting for all workers to return  


• In particular, for K-Asynchronous  Distributed Gradient Descent the master performs the 
update every time that  workers return


• The workers may have different models at any given moment

k
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The LWPD Code 𝒞(8,4,2)

•  = ``the derivative of the first half of the output 

nodes with respect to the first half of the dataset'', 


•  ``the derivative of the second half of the 

output nodes with respect to the first half of the 
dataset'', 


• ``the derivative of the first half of the output 

nodes with respect to the second half of the 
dataset'', and 


• ``the derivative of the second half of the 

output nodes with respect to the second half of 
the dataset''.
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Parameter Compression

• The different ways to partition the 
backpropagation gradient. 


• The first partition shows how to 
partition the gradient for a simple 
neural network with no hidden nodes. 


• The two other partition corresponds to 
a more general deep-neural network 
with hidden nodes. 


• The last partition depicts the recursive 
construction for larger n



Contributions
• The main contribution of this work is to construct a gradient coding scheme that is 

asynchronous


• In particular, not all the information is needed to decode 


• Previous works have considered both separately but not simultaneously  


• To achieve this we construct the code so that it can be iteratively decoded


• If the code has rank  we can update the gradient with less than  workers


• We can further lower communication complexity by compressing the partial 
gradients sent back to the master 


• A theoretical contribution is to come up with the correct definition of distance 
between code-words that maximizes information returned by subsets of coded 
gradients
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Comparison of Main Algorithms

• (LPDC) Lightweight Projective Derivative Codes


• GC) Gradient Coding \cite{pmlr-v70-tandon17a} 


• (K-AC) $K$-Asynchronous Gradient Descent



Experimental Results
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