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Representation of Images with Physical Objects

◍ Slot-based latent variable models

◍ Pros: generative, probabilistic interpretation

◍ Cons: complexity grows with number of objects, hard to 
train and interpret
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Locatello et al.,“Object-Centric Learning with Slot Attention”, NeurIPS 2020
https://generallyintelligent.ai/open-source/2021-03-09-slot-attention/



Representation of Images with Physical Objects

◍ Patch-based object-centric latent variable models

◍ Pros: generative, probabilistic interpretation, non-sequential

◍ Cons: limited to moderate number of objects, complex filtering 
process
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Lin et al.,“SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition”, ICLR 2020



Representation of Images with Physical Objects

◍ Keypoints (descriptors/landmarks)

◍ Pros: simple, can work with a lot of objects.

◍ Cons: usually deterministic, limited generative capacity
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Jakab et al.,“Unsupervised Learning of Object Landmarks through Conditional Image Generation”, NeurIPS 2018



Deep Latent Particles (DLP)
Particle: Keypoint + Features

Keypoints are the latent space of a Variational Autoencoder (VAE)

Particle positions prior based on spatial-softmax (SSM)

Chamfer-KL: novel modification of the KL term in the ELBO
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How Does DLP Work?
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Animation by Luke Hawkes - A visual representation of the Chamfer distance function

Type equation here.

𝒅𝑪𝑯−𝑲𝑳(𝑆1, 𝑆2) = 

𝑥 ∈𝑆1

min
𝑦 ∈𝑆2

𝐾𝐿(𝑥 ‖𝑦) + 

𝑦 ∈𝑆2

min
𝑥 ∈𝑆1

𝐾𝐿(𝑥 ‖𝑦)



Unsupervised Keypoint Discovery

◍ State-of-the-art performance on the MAFL dataset

◍ The learned particle uncertainty is informative
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Particle-based Image Manipulation
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Particle-based Video Prediciton

◍ Predict the temporal change in particles with GNNs

14

Tal Daniel - Technion – Israel Institute of Technology



Thanks for watching!
https://taldatech.github.io/deep-latent-particles-web

Presentation template by SlidesCarnival

👍
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