The Andrew and Erna Viterbi Faculty of ELECTRICAL & COMPUTER ENGINEERING

Unsupervised Image Representation Learning with Deep Latent Particles

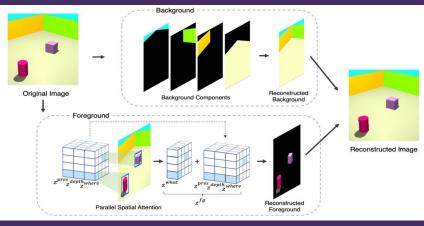
ICML 2022 taldatech.github.io/deep-latent-particles-web

Tal Daniel 💿 Aviv Tamar

Tal Daniel - Technion - Israel Institute of Technology

Representation of Images with Physical Objects

- Slot-based latent variable models
- Pros: generative, probabilistic interpretation
- Cons: complexity grows with number of objects, hard to train and interpret

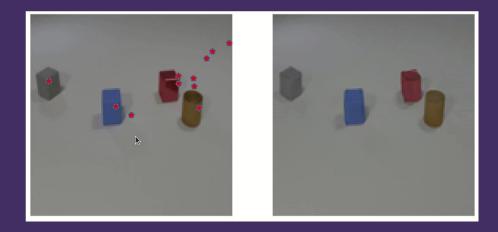

Locatello et al., "Object-Centric Learning with Slot Attention", NeurIPS 2020 https://generallyintelligent.ai/open-source/2021-03-09-slot²attention/

Representation of Images with Physical Objects

Patch-based object-centric latent variable models

- Pros: generative, probabilistic interpretation, non-sequential
- Cons: limited to moderate number of objects, complex filtering

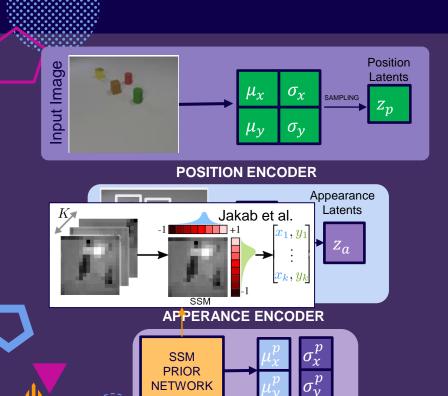
process


Lin et al., "SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition", ICLR 2020

Representation of Images with Physical Objects

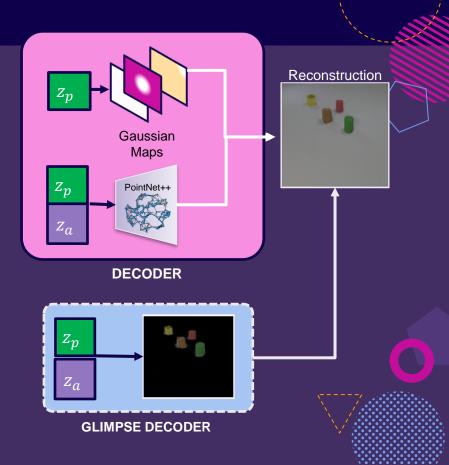
- Keypoints (descriptors/landmarks)
- Pros: simple, can work with a lot of objects.
- Cons: usually deterministic, limited generative capacity

Jakab et al., "Unsupervised Learning of Object Landmarks through Conditional Image Generation", NeurIPS 2018



Deep Latent Particles (DLP)

Particle: Keypoint + Features


Keypoints are the latent space of a Variational Autoencoder (VAE) Particle positions prior based on spatial-softmax (SSM) Chamfer-KL: novel modification of the KL term in the ELBO

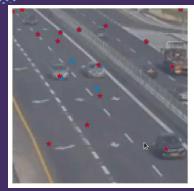
How Does DLP Work?

PRIOR ENCODER

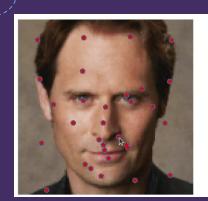
CONSTANT

$$d_{CH-KL}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} KL(x || y) + \sum_{y \in S_2} \min_{x \in S_1} KL(x || y)$$

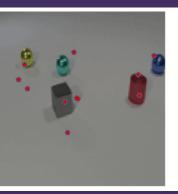
Animation by Luke Hawkes - A visual representation of the Chamfer distance function


Unsupervised Keypoint Discovery

State-of-the-art performance on the MAFL dataset
The learned particle uncertainty is informative


Method	K (number of unsupervised KP)	Error on MAFL (lower is better)
Zhang (Zhang et al., 2018)	30	3.16
KeyNet (Jakab et al., 2018)	30	2.58
	50	2.54
Ours	25	2.87
	30	2.56
	50	2.43
Ours+ (with variance features)	25	2.52
	30	2.49
	50	2.42

Particle-based Image Manipulation



Particle-based Video Prediciton

${\ensuremath{\mathbb O}}$ Predict the temporal change in particles with GNNs

Thanks for watching!

https://taldatech.github.io/deep-latent-particles-web

Presentation template by SlidesCarnival

15