Distributionally-Aware Kernelized Bandit Problems for Risk Aversion

Sho Takemori

Fujitsu Limited

July, 2022

Sho Takemori (Fujitsu Limited)

Kernelized Bandit Problems for Risk Aversion

July, 2022 1 / 10

Introduction and Overview

- The kernelized bandit problem (or Bayesian optimization) is a well-studied problem for optimizing the mean of the outputs of an unknown function.
- Recently, in more generalized settings, algorithms try to optimize the mean performance with small variance (i.e., the Mean-Variance metric E [y] − cV [y]) or try to optimize CVaR E [y | y ≤ F⁻¹(α)], where c > 0, α ∈ (0,1) are parameters of the metrics, y is an output random variable at a point x, F is the CDF of the output y.
- However, in most existing works, there are restrictions and shortcomings described later.
- In this talk, we address the issues by modeling the output distributions using kernel mean embeddings (KME) and a probability kernel.
- Then, we propose UCB-type and phased-elimination based algorithms for CVaR and MV, and prove a near optimality in the case of CVaR and Matérn kernels.

For simplicity, we only consider the case of CVaR optimization in this talk.

Sho Takemori (Fujitsu Limited)

Comparison with Existing Work

- In most existing works on kernelized bandit problems for risk-aversion, they model the output y by y = f(x, W), where x is an input variable, and W is a RV called the environment RV that accounts for randomness of the output y.
- However, usually, algorithms based on this model have some limitations or shortcomings.
- Recently, Nguyen et al. (2021) proposed kernelized bandit algorithms for CVaR, they assumed that algorithms can control/select W in optimization procedure, which is a restrictive assumption for complex environments (such as the real world).
- Moreover, since the regret upper bound is given using the maximum information gain of a function w.r.t. (x, W), their algorithms can have larger regret upper bounds due to possible high dimensionality of W even if that of x is moderate.

K A E K A E K

Notation and Brief Review of Kernel Mean Embeddings

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ be kernels on sets \mathcal{X} and \mathcal{Y} with $\mathcal{Y} \subset \mathbb{R}$.
- Let $\phi_k : \mathcal{X} \to \mathcal{H}_k(\mathcal{X})$ be the feature map to the RKHS $\mathcal{H}_k(\mathcal{X})$ define ϕ_l similarly.
- Under mild conditions on the kernel $l, \exists ! \mu_l : \mathcal{M}(\mathcal{Y}) \to \mathcal{H}_l(\mathcal{Y})$ s.t.

$$\langle \mu_l(\rho), f \rangle_l = \mathbf{E}_{y \sim \rho} [f(y)], \quad \forall f \in \mathcal{H}_l(\mathcal{Y}).$$

Here $\langle \cdot, \cdot \rangle_l$ denotes the inner product in $\mathcal{H}_l(\mathcal{Y})$ and $\mathcal{M}(\mathcal{Y})$ denotes the space of probability distributions on \mathcal{Y} .

• The map μ_l is called Kernel Mean Embedding (KME).

Problem Formulation

- For unknown map $\rho : \mathcal{X} \to \mathcal{M}(\mathcal{Y})$ and a given time interval T, an agent selects an arm $x_t \in \mathcal{X}$ based on the observation history $x_1, y_1, \ldots, x_{t-1}, y_{t-1}$ for each round $t = 1, \ldots, T$.
- The environment reveals a noisy output y_t with $y_t | \mathcal{F}_{t-1} \sim \rho(x_t)$, where \mathcal{F}_{t-1} denotes the σ -algebra generated by x_1, y_1, \ldots, x_t .
- The performance of an algorithm is evaluated by the cumulative CVaR regret defined as

$$R_{\text{CVaR},\alpha}(T) = \sum_{t=1}^{T} \left(\sup_{x \in \mathcal{X}} \text{CVaR}_{\alpha}(\boldsymbol{\rho}(x)) - \text{CVaR}_{\alpha}(\boldsymbol{\rho}(x_t)) \right).$$

Model Assumption: Probability Kernel Embedding Approach

- Without smoothness assumption one cannot hope for an algorithm with a sublinear regret guarantee.
- In the commutative diagram (i.e., Θ ∘ φ_k = μ_l ∘ ρ) below, the map Θ controls the smoothness of ρ.
- \bullet In this paper, we assume that Θ is a bounded linear operator between RKHSs.
- If *l* is the linear kernel, this model assumption is identical to the conventional model assumption in the kernelized bandit problem.
- This assumption is closely related to conditional mean embeddings, but we consider a more suitable setting for the bandit problem (e.g., initially, a probability kernel ρ is given).

$$\begin{array}{ccc} \mathcal{X} & \stackrel{\rho}{\longrightarrow} & \mathcal{M}(\mathcal{Y}) \\ \end{array}$$
feature map $\phi_k \downarrow & \operatorname{KME} \mu_l \downarrow \\ & \mathcal{H}_k(\mathcal{X}) & \stackrel{\Theta}{\longrightarrow} & \mathcal{H}_l(\mathcal{Y}) \end{array}$

A UCB-type Algorithm

For observation history $(x_1, y_1), \ldots, (x_t, y_t)$ up to time step t, we define $\widehat{\mathrm{CVaR}}_{\alpha,t}(x)$ by

$$\sup_{\nu \in \mathcal{Y}} \left\{ \nu - \frac{1}{\alpha} (\psi_{\nu}(y_1), \dots, \psi_{\nu}(y_t)) (\mathbf{k}(x_{1:t}, x_{1:t}) + \lambda \mathbf{1}_t)^{-1} \mathbf{k}(x_{1:t}, x) \right\},$$
(1)

where $\mathbf{k}(x_{1:t}, x_{1:t}) = (k(x_i, x_j))_{1 \le i,j \le t}$, $\mathbf{k}(x_{1:t}, x)^{\mathrm{T}} = (k(x_i, x))_{1 \le i \le t}$, and $\psi_{\nu}(y) = \max\{\nu - y, 0\}$. Assuming $|\mathcal{Y}| < \infty$, with probability at least $1 - \delta$, we have

$$\left| \operatorname{CVaR}_{\alpha}(\boldsymbol{\rho}(x)) - \widehat{\operatorname{CVaR}}_{\alpha,t}(x) \right| \leq \frac{U}{\alpha} \beta_{k,t}^{(\mathrm{CV})}(\delta) \sigma_{k,t}(x),$$
(2)

for all x and t, where $\beta_{k,t}^{(CV)}(\delta) = O(\sqrt{(\gamma_{k,t} + \log(|\mathcal{Y}|/\delta))})$ and $\gamma_{k,t}$ is the maximum information gain.

Theorem

We can consider a UCB-type algorithm for CVaR, and with probability at least $1 - \delta$ its cumulative regret is upper bounded by $O(\frac{1}{\alpha}\beta_{k,t}^{(CV)}(\delta)\sqrt{T\gamma_{k,T}})$.

Rough Statement for a Nearly Optimal Algorithm

We can consider a phased algorithm (as in the conventional setting) for CVaR and provide a rough statement of the results.

Theorem

- Assume that \mathcal{X} and \mathcal{Y} are finite. Then, with probability at least 1δ , the cumulative regret of the phased algorithm is upper bounded by $\widetilde{O}(\frac{1}{\alpha}\sqrt{\log(|\mathcal{X}||\mathcal{Y}|/\delta)}\sqrt{T\gamma_{k,T}})$.
- Moreover, if k is a Matérn kernel, then the phased algorithm is nearly optimal, i.e., up to a poly-logarithmic factor of T, the upper bound matches an algorithm-independent lower bound of the problem.

Experiments in Synthetic Environments

- We empirically compare the UCB-type algorithm for CVaR and IGP-UCB in the case when \mathcal{X} is a discretization of $[0,1]^3$.
- We randomly generate lognormal environments $\mathcal{LN}(\mu_m(x), \sigma_m(x))$ by randomly generated functions $\mu_m(x), \sigma_m(x)$ for $m = 1, \ldots, 10$.
- As the theoretical result indicates the proposed method incurs sublinear regret for all α and outperforms the baseline algorithm in many cases.

Figure: Cumulative CVaR Regret for LogNormal Environments

Quoc Phong Nguyen, Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Optimizing conditional Value-At-Risk of black-box functions. *Advances in Neural Information Processing Systems*, 34, 2021.