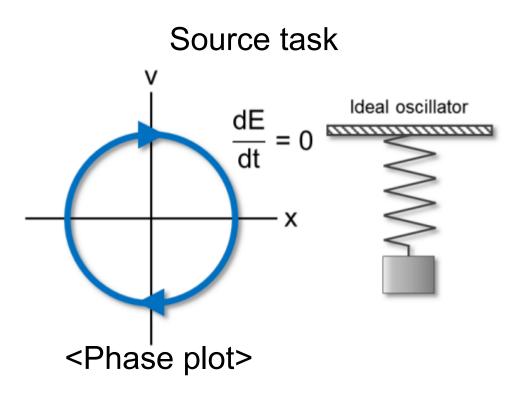


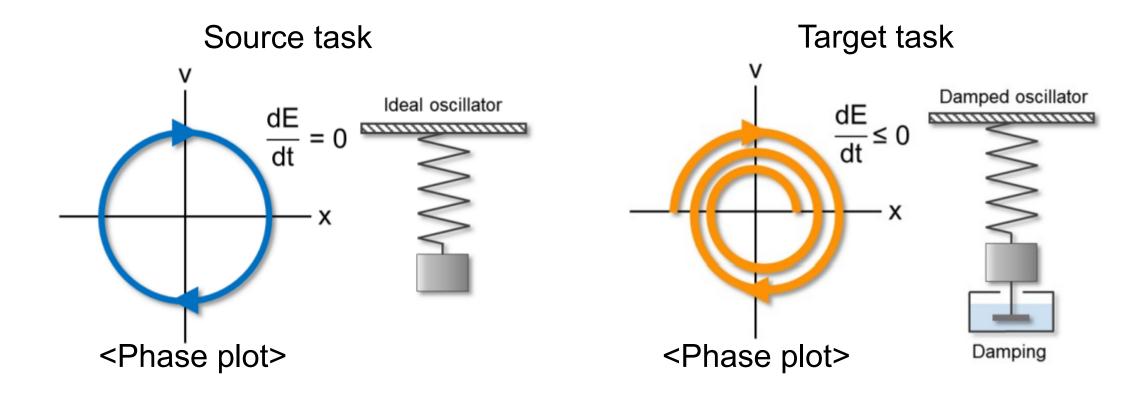
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning

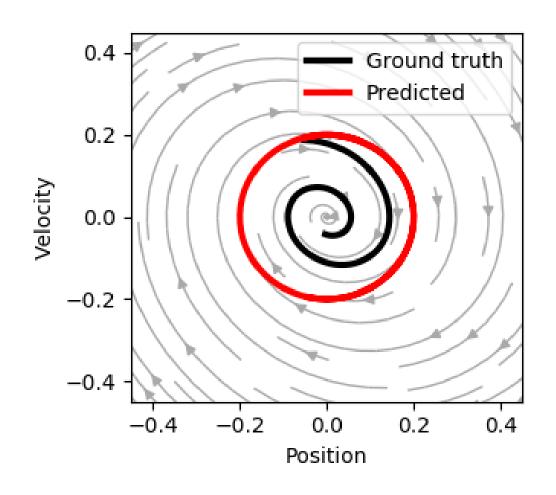
Sanghoon Myung¹, In Huh¹, Wonik Jang¹, Jae Myung Choe¹, Jisu Ryu¹, Dae Sin Kim¹, Kee-Eung Kim², and Changwook Jeong³

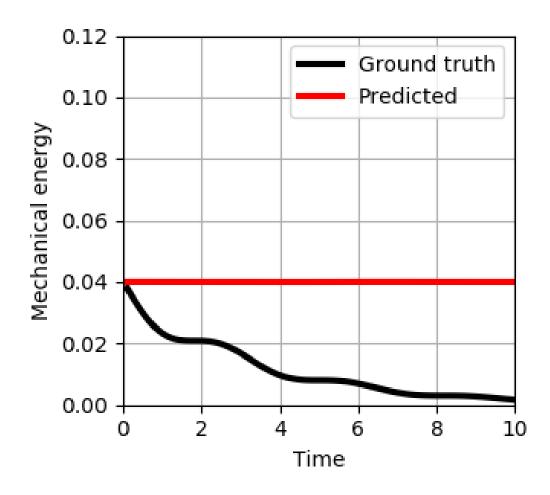
¹Computational Science and Engineering Team, Innovation Center, Samsung Electronics
²Kim Jaechul Graduate School of AI, KAIST

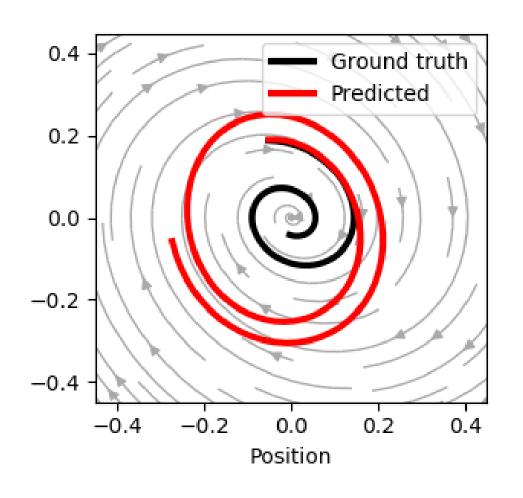
³Graduate School of Semiconductor Materials and Devices Engineering, UNIST

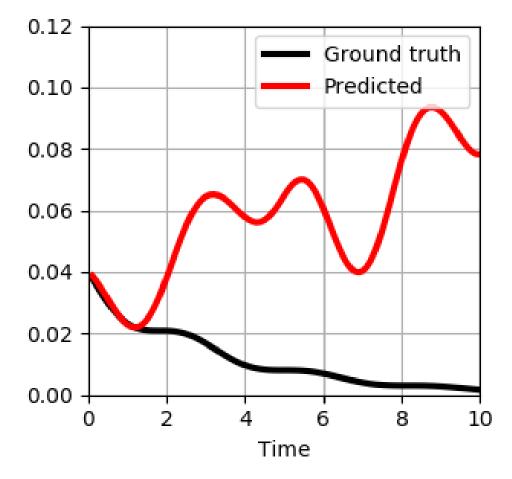












Proposal

Hypothesis

- It is crucial to totally preserve the source knowledge for inductive transfer learning.
- If the source task is related to the target task, the weights between the source and target model are close.

■ Key idea of PAC-Net

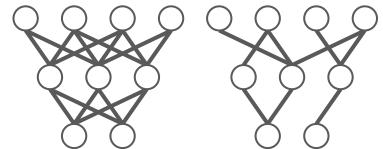
- Deep neural network is often overparameterized to improve its performance.
- Pruning technique can be applied to preserve the source knowledge and to reutilize the pruned weights to learn the target task.

Proposal: PAC-Net

■ Step 1: Pruning

- Prunes the weights \mathbf{w}_{S} of the pre-trained model by applying the following binary mas \mathbf{k} (\mathbf{m}) that keeps the top-K large-magnitude weights:

$$m^{i} = \begin{cases} 1, & \text{if } |w^{i}| > w_{\kappa} \\ 0, & \text{otherwise,} \end{cases}$$



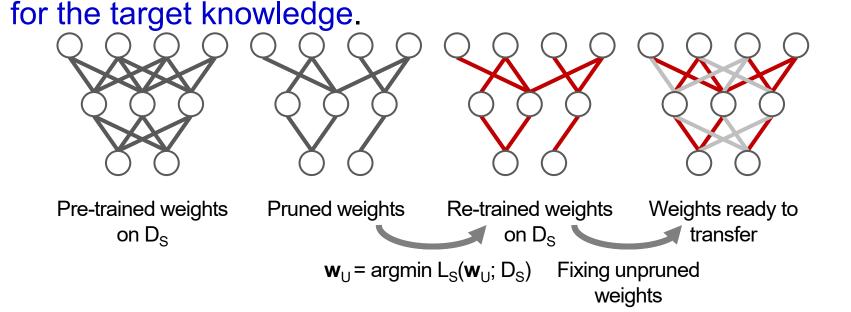
Pre-trained weights on D_S

Pruned weights

Top-K pruning Fixing pruned weights

Proposal: PAC-Net

- Step 2: Allocation
- Since all the information on the source task should be embedded in $\mathbf{w}_U = \mathbf{w} \odot \mathbf{m}$, st ep 2 retrains the masked neural network with the source dataset.
- This procedure allocates \mathbf{w}_U for the source knowledge and \mathbf{w}_P that will be reutilized



w_U: unpruned weights

w_P: pruned weights

D_S: source dataset

D_T: target dataset

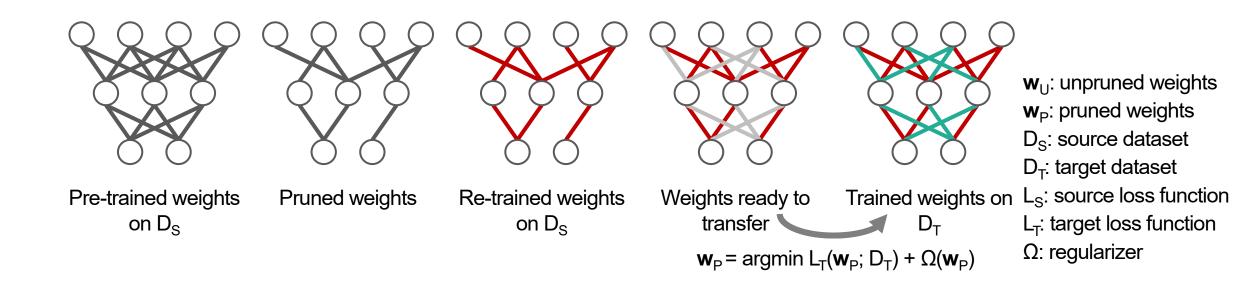
L_S: source loss function

L_T: target loss function

Ω: regularizer

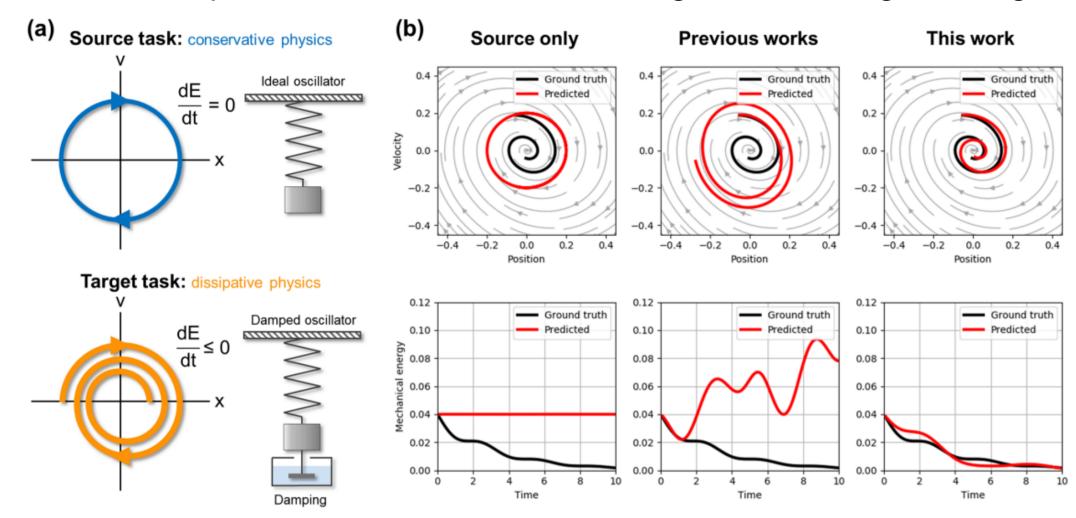
Proposal: PAC-Net

- Step 3: Calibration
- Our objective is to calibrate $\mathbf{w}_P = \mathbf{w} \odot (1 \mathbf{m})$ to the target task. In this procedure, only \mathbf{w}_P should be updated with L^2 constraint to completely keep the source knowledge (\mathbf{w}_U) .



Results

■ PAC-Net can preserve the source knowledge on learning the target task.



Conclusion

- We proposed a simple yet effective approach for inductive transfer learning based on pruning.
- Our method through pruning with regularization makes the model mitigate catastrophic forgetting, which achieves state-of-the-art performance.
- Our method can be applicable in various tasks for classification and regres sion as well as the impactful tasks such as ODEs and PDEs.