Adversarially Trained Actor Critic for Offline Reinforcement Learning

Ching-An Cheng*, Tengyang Xie*, Nan Jiang, Alekh Agarwal

(*equal contribution)

Motivation

• Challenge of real-world decision-making problems

Data collection is costly and risky

How to make decisions under systematic uncertainty?

Collected data lack diversity, despite quantity, as data can only be collected by qualified policies

Offline Reinforcement Learning

- **Goal**: learn good decision policies from non-exploratory datasets.
- Core challenge:

Because of missing data coverage, in general, it's impossible to estimate how well a policy performs.

How to optimize a policy without being able to estimate how well it performs?

How to understand a driving behavior is unsafe if all the data are safe?

Offline Reinforcement Learning

• Principle:

Optimize performance lower bounds, that is, worst-case performance.

• But there're many ways to define and construct worst-case scenarios.

How to properly trade off between conservatism and generalization??

How to understand a driving behavior is unsafe if all the data are safe?

Contribution

• Adversarially Trained Actor Critic (ATAC)

A provably correct & scalable framework based on relative pessimism for offline RL with nonlinear function approximators

Learning Optimality	Learn the optimal policy as long as the data covers the optimal policy well		
	Robust Policy Improvement	Learn data co regard	a policy better than the ollection policy, lless of hyperparameters.

Why Relative Pessimism?

Hypothesis class

- 1. Bus arrives on time: Bus 5 min, Walk 30 min
- 2. Bus is delayed: Bus 30 min, Walk 30 min

Problem Setup

• Suppose the world is a Markov decision process (MDP)

Offline setting assumption: offline data \mathcal{D} , collected by a behavior policy μ starting from d_0 .

Goal: Find a policy π that has high return

 $J(\pi) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})\right]$

No interaction with environment for learning.

Key Idea: Relative Pessimism

• Optimize for the **worst-case** performance compared with the **behavior policy** *μ*.

$$\widehat{\pi}^* \in \mathop{\arg\max}_{\pi \in \Pi} \operatorname{Lower \ bound \ of } J(\pi) - J(\mu)$$

Lower bound
$$< J(\pi) - J(\mu)$$

Key Idea: Relative Pessimism

• Optimize for the **best worst-case** performance compared with the **behavior policy** *μ*.

$$\widehat{\pi}^* \in \underset{\pi \in \Pi}{\operatorname{arg\,max}} \text{Lower bound of } J(\pi) - J(\mu)$$

ATAC frames this problem as a Stackelberg game (i.e., bilevel optimization)

• ATAC optimizes for relative pessimism via solving a Stackelberg game

Robust Policy Improvement Property

For all $\beta \ge 0$, the ATAC policy is always no worse than the behavior policy that collected the data.

 $\mathcal{L}_{\mu}(\pi, f) \coloneqq \mathbb{E}_{\mu}[f(s, \pi) - f(s, a)]$ $\mathcal{E}_{\mu}(\pi, f) \coloneqq \mathbb{E}_{\mu}[((f - \mathcal{T}^{\pi}f)(s, a))^{2}].$

ATAC

$$\widehat{\pi}^* \in \underset{\pi \in \Pi}{\operatorname{arg\,max}} \mathcal{L}_{\mu}(\pi, f^{\pi})$$

s.t.
$$f^{\pi} \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathcal{L}_{\mu}(\pi, f) + \beta \mathcal{E}_{\mu}(\pi, f)$$

– hypothesis $f(s,\cdot)$ with small $eta \mathcal{E}_{\mu}$

Functions that are consistent with the reward and the dynamics on the behavior data

Leader = Actor = Conditional generator ATAC Follower = Critic = Discriminator

 $\widehat{\pi}^* \in \underset{\pi \in \Pi}{\operatorname{arg\,max}} \mathcal{L}_{\mu}(\pi, f^{\pi})$ s.t. $f^{\pi} \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathcal{L}_{\mu}(\pi, f) + \beta \mathcal{E}_{\mu}(\pi, f)$

ATAC provides a bridge between offline RL and imitation learning with IPM via the lens of generative adversarial networks (GAN)

Offline RL + Relative Pessimism = IL + Bellman Regularization

Solving the Stackelberg Game

losses are approximated by samples

No-Regret + Best Response Scheme

$$f_k \in \arg\min_{f \in \mathcal{F}} \mathcal{L}_{\mu}(\pi_k, f) + \beta \mathcal{E}_{\mu}(\pi_k, f)$$
small policy update
$$\pi_{k+1} = \operatorname{NoRegret}(\pi_k, f_k)$$
Repeat for K iterations

Output uniform mixture of policies (theory) or the last policy (practice) In practice, the above is implemented by two-timescale SGD updates

ATAC Theory (Informal)

Learning Optimality

Assume \mathcal{F} satisfies realizability and completeness.

Given dataset
$$\mathcal{D}$$
 s.t. $|\mathcal{D}| = N$. With $\beta = \Theta(N^{2/3})$. Then $\forall \pi \in \Pi$,
 $J(\pi) - J(\hat{\pi}) \leq \mathcal{O}\left(\frac{1}{(1-\gamma)N^{1/3}}\right) + \epsilon_{\text{generalization}}(\mathcal{F}, \pi, \mathcal{D})$
average Bellman error of f_t on
the distribution of π

With a **well tuned** β , ATAC can compete with any policy within the data coverage.

ATAC Theory (Informal)

Robust Policy Improvement

Assume \mathcal{F} satisfies **realizability** without the need of completeness. If $\mu \in \Pi$, then $J(\mu) - J(\bar{\pi}) \leq \mathcal{O}\left(\frac{1}{(1-\gamma)N^{1/2}} + \frac{\beta}{(1-\gamma)N}\right)$

ATAC always improves over the behavior policy so long as $\beta = o(N)$.

ATAC and Other Offline RL Techniques

	Relative Pessimism	Absolute Pessimism		
Two-player Game	ATAC: Maximin problem of relative performance Robust Policy Improvement	Maximin problem of absolute performance (Xie et al., 2021, Uehara et al., 2021)		
	Less Conservative	Less Conservative		
Single MDP	Behavior regularization (Fujimoto et al. 2019,2021, Kuma et al., 2019, Laroche et al. 2019) Robust Policy	Algorithms based on bonus/truncations (Kostrikov et al., 2021, Liu et al., 2020, Jin et al. 2021, Kidambi et al., 2020, Yu et al. 2020)		
	Improvement			
	Simple	Simple		

Experimental Results

Robust Policy Improvement

ATAC's robustness property enables online HP selection. We can gradually increase β to tune its performance without breaking the baseline performance.

Experimental Results

	Behavior	ATAC*	CQL	COMBO	TD3BC	IQL	BC
halfcheetah-rand	-0.1	4.8	35.4	38.8	10.2	-	2.1
walker2d-rand	0.0	8.0	7.0	7.0	1.4	-	1.6
hopper-rand	1.2	31.8	10.8	17.9	11.0	-	9.8
halfcheetah-med	40.6	54.3	44.4	54.2	42.8	47.4	36.1
walker2d-med	62.0	91.0	74.5	75.5	79.7	78.3	6.6
hopper-med	44.2	102.8	86.6	94.9	99.5	66.3	29.0
halfcheetah-med-replay	27.1	49.5	46.2	55.1	43.3	44.2	38.4
walker2d-med-replay	14.8	94.1	32.6	56.0	25.2	73.9	11.3
hopper-med-replay	14.9	102.8	48.6	73.1	31.4	94.7	11.8
halfcheetah-med-exp	64.3	95.5	62.4	90.0	97.9	86.7	35.8
walker2d-med-exp	82.6	116.3	98.7	96.1	101.1	109.6	6.4
hopper-med-exp	64.7	112.6	111.0	111.1	112.2	91.5	111.9
pen-human	207.8	79.3	37.5	-	-	71.5	34.4
hammer-human	25.4	6.7	4.4	-	-	1.4	1.5
door-human	28.6	8.7	9.9	-	-	4.3	0.5
relocate-human	86.1	0.3	0.2	-	-	0.1	0.0
pen-cloned	107.7	73.9	39.2	-	-	37.3	56.9
hammer-cloned	8.1	2.3	2.1	-	-	2.1	0.8
door-cloned	12.1	8.2	0.4	-	-	1.6	-0.1
relocate-cloned	28.7	0.8	-0.1	-	-	-0.2	-0.1
pen-exp	105.7	159.5	107.0	-	-	-	85.1
hammer-exp	96.3	128.4	86.7	-	-	-	125.6
door-exp	100.5	105.5	101.5	-	-	-	34.9
relocate-exp	101.6	106.5	95.0	-	-	-	101.3

ATAC achieves SOTA performance, outperforming baseline algorithms in most datasets

Datasets where ATAC is the best performing algorithm, with 9% improvement (median) compared with the best baseline algorithm.

Summary

Paper

Github

• Adversarially Trained Actor Critic (ATAC)

A provably correct & scalable framework based on relative pessimism for offline RL with nonlinear function approximators

	Learning Optaimlity	Learn the optimal policy as long as the data covers the optimal policy well		SoTA Empirical Results
Useful for applicatio lead to ris	online HP tuning and ns where decisions can ky consequences	Robust Policy Improvement	Learn data c regarc	a policy better than the ollection policy, lless of hyperparameters.