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What is Poisoning? Why Should We Care?

Data poisoning is a type of adversarial attack that inject
poisoning samples into the training data.
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What is Poisoning? Why Should We Care?

-> financial services

— . -> security cameras
[ SOIstone ] -> autonomous cars
YSIeMS J 5 nedical services

Large ]
Traini Dat = One of the most concerning
raining vata threats to ML systems!
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What is Poisoning? Why Should We Care?

ICML 2022 - Test of Time Award

AN Poisoning Attacks Against Support Vector Machines
Battista Biggio, Blaine Nelson, Pavel Laskov

ICML, 2012
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Targeted Data Poisoning Attacks
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Data Poisoning as Bilevel Optimization

Adversarial loss
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Data Poisoning as Gradient Matching

Adversarial loss
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Motivation behind many recent data poisoning attacks!
(Witches’ Brew (Geiping et al, 2021), Sleeper Agent (Souri et al.,
2021), Bullseye Polytope (Aghakhani et al., 2021), Convex Polytope (Shafahi et al., 2018), ...)
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Visualizing Gradient Matching Attacks

Training Epochs

Pecr o ;
o4 f'} oL "%
e e
AN s
e R »‘.a.. -,
STt . . *‘5 Y
- .
- l.:“ - -
’ffsio o .

Y Target image ‘ Poisons ‘ Target class O Poison class

(CIFAR-10 poisoned by Witches’ Brew [1],
visualized with the first two principal components)

. [1] Geiping et al. Witches' Brew: Industrial Scale Data
VoW Samueli Poisoning via Gradient Matching. (ICLR, 2021)



Data Poisoning Defenses

Existing Defenses...

& sacrifice accuracy

&9 are only effective for certain attacks

& are computationally expensive

& no theoretical performance guarantee
Samueli
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In comparison, our method...

®

provides the best tradeoff
between the defense strength and
generalization performance

is effective against various types
of attacks without requiring a
pre-trained clean model

works very efficiently during the
training

provides a quality guarantee for
the performance of the trained
model



Observation: Not All Poisons are Created Equal

Not all the poisoned examples are responsible for the success of the attack.

We define effective poisons as poisons that make the attack successful.
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Observation: Not All Poisons are Created Equal

Effective poisons are poisons that make the attack successful.
Effective poisons are close to the target in the gradient space.
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Not all the randomly selected
examples can be modified by bounded
perturbations to have a gradient that
closely matches that of the target.
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Effective Poisons are not Low-Confidence or High-Loss

@ Efiective poisons @ Ineffective poisons

Effective poisons are NOT

=> data points around the decision boundary for which the model is not confident,
=> oroutliers that have a higher loss than other data points in their class.
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Effective Poisons are not Low-Confidence or High-Loss

Effective poisons cannot be efficiently removed by dropping all examples with the
highest loss or lowest confidence.
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2 They drop equal fractions of clean
examples while dropping the

1o W\ Samueli effective poisons!
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How can we find the effective poisons?

Effective poisons are isolated in the 1.0
gradient space of the poison class. < 5

=
Their gradients are neither similar to each r—g 0.8
other nor similar to other examples in the @ g
base class. = !
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How can we find the effective poisons?

Effective poisons are isolated in the 1.0
gradient space of the poison class. < 5
@ 5 0.4

£
5 0.7

Finding and dropping isolated examples £
.. . . o 0.6

eliminates effective poisons and thuscan O
prevent the model from being poisoned. 0.5
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Effective Poison Identification (EPIC)

- Train the model for a few epochs

- For every T epochs:

1. find medoids of each class = (Find the gradient centers of each class)

with a greedy (submodulat) =———p» - Worst case (1-1/e)

approximation guarantee
- Fast: low computational
2. assign every data point to its complexity

algorithm,

closest medoid,
3. drop medoids to which no
other data point is assigned,
4. use the remaining data to train

the model for T epochs.
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Effective Poison Identification (EPIC)

Clean examples and ineffective
poisons usually form larger clusters
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Effective poisons are The remaining effective poisons
isolated medoids become isolated during training
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Effective Poison Identification (EPIC)
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=> EPIC can more effectively
remove effective poisons with
less clean examples dropped.
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Cumulative Dropped Fraction
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-> EPIC removes most of effective
poisons at early training.
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Effective Poison Identification (EPIC)

Theorem 3.1. Assume that the loss function L£(0) is ji-PL*
onaset©, ie., 1|VLO)|* > pLl(6),V8 € ©. Assume p is
the maximum change in the gradient norm due to dropping
points. Then, applying gradient descent with a constant
learning rate n has similar training dynamics to that of
training on the full data. lLe.,

1
(0% — 20V max). (6)
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=» Training with EPIC guarantees similar training dynamics to that of training on
full data and thus ensures a similar generalization performance.
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Effective Poison Identification (EPIC)
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Effective Poison Identification (EPIC)

EPIC is the only defense that performs well on all three metrics!
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Scaling EPIC to Larger Datasets

Data Poisoning TinylmageNet
B Undefended B Adversarial training for data poisoning ® EPIC
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EPIC against Different Poisoning Attacks

Table 1. Average attack success rate and validation accuracy for EPIC against various data poisoning attacks (200-epoch pipeline).

ATTACK SENARIO UNDEFENDED DEFENDED
Art Succ.tT  Test Acc.t  Arrt Succ.] TEST Acc.t

GRADIENT MATCHING FROM-SCRATCH 45% 94 .95% 1 % 90.26%
SLEEPER AGENT (BACKDOOR) FROM-SCRATCH 78.54% 94.42% 11.55% 88.28%
BULLSEYE POLYTOPE TRANSFER 86% 94.69% 1 % 94 .80%
FEATURE COLLISION TRANSFER 40% 94.68% 0% 94.81%
BULLSEYE POLYTOPE FINETUNE 80% 92.24% 0% 92.38%

'

from-scratch, transfer learning, fine-tuning, backdoor (with triggers), ...
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Takeaways

We study targeted data poisoning attacks and show that

1. under bounded perturbations, only a small number of effective poisons can
make the attack successful;

2. such effective poisons get isolated in the gradient space;

3. dropping examples in low-density gradient regions iteratively during training
can successfully eliminate the effective poisons, and guarantees similar training
dynamics to that of training on full data.

Compared to existing defense strategies, our method...

does not require a pre-trained clean model

is effective against various types of attacks

can be applied very efficiently during the training

provides a quality guarantee for the performance of the trained model
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Not All Poisons are
Created Equal:
Robust Training

against Data Poisoning

For more detalls...

please check out our paper and code:

O YuYang0901/EPIC

Yu Yang, Tian Yu Liu, Baharan Mirzasoleiman Poster: Hall E #532
Wed (7/20)
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