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Two Limitations

Agent’s past experiences no longer play
a direct role in the agent’s behavior.

Not exploit specific guidance that a
handful of past experiences may provide
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Different Sources of Data for Training RL Algorithms

We want to create new RL algorithms that:
1. Harness data from a variety of sources:
O Past experiences of the agent,
O Past experiences of the other agents.
O Even imagined rollouts.
2. Predict & plan with a jumpy models that stitches together information across all of

these experience types.
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- Learned function encodes the data in the replay dataset.
- Retrieval process queries for data relevant to the agent in it’s current context.

- Agent process uses the retrieved information to shape the value function.
- At test time, agent can generalize” to novel behaviors.



Retrieval Process and Agent Process

Dataset of experiences (95)
- Contains raw data in the form of trajectories.



Retrieval Process and Agent Process

Retrieval Process
- Parameterized as a neural network.
- Retrieves information from dataset.

Contextual
Information from the
agent process.
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Retrieval Process and Agent Process
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- Parameterized as a neural network. feagent LS, U JZ'Q(SZ, U, Cl)
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Experiments

- Past experiences in the dataset [off policy RL/on-policy RL]

- (Multi-task) Data from other policies [offline RL]

- Online RL but access to (offline) dataset

- Test time generalization to new “dataset”
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Multi-tasking Offline RL: Retrieval Augmented Reinforcement Learning

Increasing number of tasks (10, 20 and 30 tasks) — RA-DQN ?F?N (bll‘?j) o \
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Task: On the board there are three colored objects and the robot is represented
.. by a black block. The robot can move itself and move the objects.

On increasing number of tasks, the retrieval-augmented agent
learns much more effectively than the baseline DQN agent.

GridRoboman Env:



Continual Learning Results: Instruction Following

First training on training tasks, and then
1 5 10 20

sequential “adaptation” on transfer tasks.
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Takeaway Lesson

Dataset of
experiences

Parameterized as a Retrieval ‘ ’
Neural Network Process \

' Flexibly adapt to new
unknown tasks




