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Different Sources of Data for Training RL Algorithms
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Retrieval Augmented Reinforcement Learning (RARL)

- Learned function encodes the data in the replay dataset.

- Retrieval process queries for data relevant to the agent in it’s current context.
- Agent process uses the retrieved information to shape the value function.
- At test time, agent can ``generalize’’ to novel behaviors. 
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Experiments
- Past experiences in the dataset [off policy RL/on-policy RL] 

-  (Multi-task) Data from other policies [offline RL]

- Online RL but access to (offline) dataset 

- Test time generalization to new “dataset”  



Atari Single Task: Retrieval Augmented Reinforcement Learning

Atari: Relative percentage improvement 

in mean human normalized score of 


RA-R2D2 vs vanilla R2D2.



Multi-tasking Offline RL: Retrieval Augmented Reinforcement Learning

30 training tasks
20 training tasks10 training tasks

On increasing number of tasks, the retrieval-augmented agent 

learns much more effectively than the baseline DQN agent.

GridRoboman Env:

Increasing number of tasks (10, 20 and 30 tasks) DQN (blue) 
RA-DQN (Proposed, Orange)

Task: On the board there are three colored objects and the robot is represented  
           by a black block. The robot can move itself and  move the objects.



Continual Learning Results: Instruction Following
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Task 30

⋯
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Task 40 

⋯

Training tasks Sequentially train  
on transfer tasks

First training on training tasks, and then 
sequential “adaptation” on transfer tasks.

Normalized improvement over  
10 different tasks.

Task 33
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