
Secure Distributed Training at Scale

Eduard Gorbunov*, Alexander Borzunov*, Michael Diskin, Max Ryabinin
Speaker: Alexander Borzunov



Motivation

• Many areas of deep learning benefit from using increasingly 
larger neural networks trained on public data
• Example: Pre-trained models for NLP and computer vision

• These models are usually trained on expensive HPC clusters 
not available to small labs and independent researchers



Motivation

• Instead, several smaller groups could pool their existing compute 
resources together and train a model that benefits all participants

Independent
Researcher 2

Small Lab A

Small Company B

Independent
Researcher 1

Training a model
over the Internet



Motivation

• However, any participant can jeopardize training by sending incorrect 
updates, unless we use algorithms with Byzantine tolerance

🤗

😈

🤗

• Prior work on Byzantine tolerance involves redundant communication 
or trusted parameter servers, infeasible in large-scale deep learning



Contribution

• In this work, we introduce a novel protocol for decentralized 
Byzantine-tolerant training suitable for large-scale deep learning
• Its extra communication cost does not depend on the number of parameters

• We also propose a heuristic for resisting Sybil attacks, so untrusted 
peers can join midway through training



Method

We start with standard Butterfly All-Reduce (Li et al., 2017):

🤗

😈

🤗

Li, Z., Davis, J., and Jarvis, S. An efficient task-based all-reduce for machine learning applications. In Proceedings 
of the Machine Learning on HPC Environments, MLHPC’17, New York, NY, USA, 2017.



Method

Step 1. To resist large gradient perturbations, we replace the naive 
averaging with CENTEREDCLIP (Karimireddy et al., 2020)

🤗

😈

🤗

Karimireddy, Sai Praneeth, Lie He, and Martin Jaggi. "Learning from history for byzantine robust 
optimization." International Conference on Machine Learning. PMLR, 2021.



Method

Step 2. Since CENTEREDCLIP is now performed by untrusted peers, we 
validate that peers are not cheating during the clipping procedure

🤗

😈

🤗



Method

Step 3. Finally, to resist a series of small gradient perturbations, we 
periodically verify gradients of random peers by recalculation

🤗

😈

🤗



Convergence Bounds

• We prove that our method converges to any predefined accuracy 
under realistic assumptions

• Our convergence rates are state-of-the-art in the decentralized 
Byzantine-tolerant setting
• And even better than SOTA for the centralized Byzantine-tolerant setting if 

the required accuracy is high enough



Convergence Bounds

• We prove strong results for non-convex problems, convex, and 
strongly convex problems



Experiments

• We ensure that our method does not harm convergence
• We experiment with 7 kinds of attacks while training ResNet-18 and 

4 kinds of attacks while training ALBERT-large
• We test attacks at various stages of training, with various periodicity 

and number of attackers



Experiments

• Our method succeeds to protect the training run from all kinds of 
attacks, unlike methods from prior work


