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Sequential Decision Making and RL

Agent

State,
Reward

Action

Environment

* Goal: maximize rewards in a fixed environment through learning



RL In Games

* Environment defined by opponent behavior
* Opponent can play adaptively and adversarially
* Will focus on two-player zero-sum adversarial opponents



Markov Game (MG)

* Generalization of MDP for games

e State Space §, |§| =S

* Two-player zero-sum game.

e Action space A = Apax X Amin, |A| = A

e Reward: 1;,(s,a) € [—1,1]

* Transition probability: P, (- |s, a) € Ag

* Horizon: H

* Episodic: {s{,a4,11,5,,...,5y, Ay, 1y}, K episodes



Policies in Markov Game (MG)

Markov Policy General (history dependent) policy
Up:S > Ay Up: (S X AEXS 5 Ay

* Best response to changing series of Markov policy is general
policy (in general)

* Max player policy u € ®, min player policy v € W
* Algorithm picks u to maximize Vl”XV(S) = E[Zh,>1 ry|s1 = S]
° {:ul'vl}z {MZ’VZ}’ Y {MKJVK}
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* For single player MDP: optimal value function

e Standard notion in online I?{arning:
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* Defined against best policy in hindsight
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* For single player MDP: optimal value function

e Standard notion in online I?{arning:
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* Defined against best policy in hindsight

Can we achieve no-regret in Markov games?

* Unclear even for 2-player zero-sum games
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Standard setting: Only observes min-player’s actions

Lower Bound I. Exists MG with |S| = 0(1), |/A| = 0(1), such that when @ is the set
of all Markov policies, |[¥| = 1 (fixed general policy) regret is Q(min{K, 27})

Lower Bound Il. Exists MG with |S| = O(H), |A| = O(H), such that when @ is the
set of all Markov policies, || = H (Markov policies), regret is Q(min{K, 27})

Key idea: MG adversarial opponent is general enough to simulate POMDP (Lower
bound I) or latent MDPs (Lower bound II)



Standard setting: Only observes min-player’s actions

Lower Bound I. Exists MG with |S| = 0(1), |/A| = 0(1), such that when @ is the set
of all Markov policies, |[¥| = 1 (fixed general policy) regret is Q(min{K, 27})

Lower Bound Il. Exists MG with |S| = O(H), |A| = O(H), such that when @ is the
set of all Markov policies, || = H (Markov policies), regret is Q(min{K, 27})

If ¥ = {Single Markov Policy}, becomes standard RL (\/poly(S,A, H)K regret)

If H = 1, contextual bandit algorithm solves the problem (\/poly(S, A, H)K regret)

Statistical hardness of MG stems from both adversarial opponents AND sequential nature



Opponent’s policy contains much information its action doesn’t reveal

Assume: Observes V¥ after episode k

May occur in self-play scenario

Algorithm I: Optimistic Policy EXP3

* Maintain model of MG transitions

* Optimistically evaluate values of all policies in @ with model
 Run EXP3 on ® using optimistic values
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Assume: Observes min-player’s policies

Upper Bound I. Regret of Algorithm | is O (\/K(Hzlog |D| + SZAH))

If @ = All Markov policies, Regret = O(VKS2AH*)

* Independent of the size of W

Might be too large if @ is all general policies, when |®| = (ASH)

* Requires knowledge of ®



Assume: Observes min-player’s policies

To compete against general policies:

Algorithm Il: Adaptive Optimistic Policy EXP3

Algorithm | +

 Update model sparsely (when visitation count doubles)

* Maintain candidate set of best responses of all possible mixtures of seen
opponent policies

 Run EXP3 on candidate set. Reset whenever it’s updated



Upper Bound Il. Regret of Algorithm Il is O (\/1’((SzAH4 + |W|SAH?3 + |‘P|2H2))

 Compares against best general policy in hindsight
e Sublinearif || = 0(\/?)

* When opponent’s strategy lacks diversity or changes infrequently
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* No guarantee when |®| is super-exponentially large AND |¥| is
exponentially large



Drawbacks of Algorithms

* No guarantee when |®| is super-exponentially large AND |¥| is
exponentially large

- Unavoidable in general.

Lower Bound lll. Exists MG with |[S| = 0(1), |-A| = 0(1), @ is the set of all general
policies, |¥| = 27, where regret is Q(min{K, 2"}) even if opponent reveals policy.

e Can’t have polynomial regret in this regime (doubly-exponential
|®|, exponential |¥|)
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Drawbacks of Algorithms

* No guarantee when |®| is super-exponentially large AND |¥| is
exponentially large

- Unavoidable in general.

* Algorithm | & Il have exponential runtime (linear in |®|,
exponential in |\V|)

- Unavoidable in general

Computational Lower Bound. A polynomial time algorithm with poly(S, 4, H)- K1~¢
regret for a MG can be used to solve 3-SAT in polynomial time.

This holds even if the MG dynamics is known, the set W is known, and policies are revealed.



Summary

Can we achieve low regret in Markov games?

General Policies

General Policies

. . , . Only Action i
Baseline Policy @ | Opponent’s Policy W Revealed Full Policy Revealed
Markov Policies General Policies 0 (\/KSZAH4)
Small Finite Class NO 0 (\/Kpoly(l‘Pl,S, A, H))

NO

For details, join us at Poster #1111




