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Sequential Decision Making and RL

• Goal: maximize rewards in a fixed environment through learning



RL in Games

• Environment defined by opponent behavior

• Opponent can play adaptively and adversarially

• Will focus on two-player zero-sum adversarial opponents



Markov Game (MG)

• Generalization of MDP for games

• State Space 𝒮, 𝒮 = 𝑆

• Two-player zero-sum game.

• Action space 𝒜 = 𝒜max ×𝒜min , 𝒜 = 𝐴

• Reward: 𝑟ℎ 𝑠, 𝒂 ∈ −1,1

• Transition probability: 𝑃ℎ(⋅ |𝑠, 𝒂) ∈ ∆𝑆
• Horizon: 𝐻

• Episodic: 𝑠1, 𝒂1, 𝑟1, 𝑠2, … , 𝑠𝐻 , 𝒂𝐻 , 𝑟𝐻 , 𝐾 episodes



Policies in Markov Game (MG)

• Best response to changing series of Markov policy is general 
policy (in general) 

• Max player policy 𝜇 ∈ Φ, min player policy 𝜈 ∈ Ψ

• Algorithm picks 𝜇 to maximize 𝑉1
𝜇×𝜈

(𝑠) = 𝔼 ෌
ℎ′≥1

𝑟ℎ′ |𝑠1 = 𝑠

• 𝜇1, 𝜈1 , 𝜇2, 𝜈2 , ⋯, 𝜇𝐾 , 𝜈𝐾

Markov Policy
𝜇ℎ: 𝑆 → Δ𝒜max

General (history dependent) policy 

𝜇ℎ: 𝑆 × 𝒜 ℎ−1 × 𝑆 → Δ𝒜max



What is a reasonable performance metric?



• For single player MDP: optimal value function

• Standard notion in online learning: 

RegretΦ = max
𝜇∈Φ

෍

𝑘=1

𝐾

𝑉1
𝜇×𝜈𝑘

− 𝑉1
𝜇𝑘×𝜈𝑘

(𝑠1)

• Defined against best policy in hindsight
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• Defined against best policy in hindsight

• Unclear even for 2-player zero-sum games

Can we achieve no-regret in Markov games?

What is a reasonable performance metric?



Lower Bound I. Exists MG with 𝑆 = 𝑂 1 , 𝒜 = 𝑂 1 , such that when Φ is the set 
of all Markov policies, Ψ = 1 (fixed general policy) regret is Ω min 𝐾, 2𝐻

Standard setting: Only observes min-player’s actions
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Key idea: MG adversarial opponent is general enough to simulate POMDP (Lower 
bound I) or latent MDPs (Lower bound II) 



Lower Bound I. Exists MG with 𝑆 = 𝑂 1 , 𝒜 = 𝑂 1 , such that when Φ is the set 
of all Markov policies, Ψ = 1 (fixed general policy) regret is Ω min 𝐾, 2𝐻

Lower Bound II. Exists MG with 𝑆 = 𝑂 𝐻 , 𝒜 = 𝑂 𝐻 , such that when Φ is the 
set of all Markov policies, Ψ = 𝐻 (Markov policies), regret is Ω min 𝐾, 2𝐻

Standard setting: Only observes min-player’s actions

If Ψ = {Single Markov Policy}, becomes standard RL ( poly(𝑆, 𝐴,𝐻)𝐾 regret)

If 𝐻 = 1, contextual bandit algorithm solves the problem ( poly(𝑆, 𝐴, 𝐻)𝐾 regret)

Statistical hardness of MG stems from both adversarial opponents AND sequential nature



Assume: Observes 𝜈𝑘 after episode 𝑘

May occur in self-play scenario

Opponent’s policy contains much information its action doesn’t reveal

Algorithm I: Optimistic Policy EXP3
• Maintain model of MG transitions
• Optimistically evaluate values of all policies in Φ with model
• Run EXP3 on Φ using optimistic values



Assume: Observes min-player’s policies

Upper Bound I. Regret of Algorithm I is ෨𝑂 𝐾 𝐻2log Φ + 𝑆2𝐴𝐻

• If Φ = All Markov policies, Regret = ෨𝑂 𝐾𝑆2𝐴𝐻4
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Assume: Observes min-player’s policies

Upper Bound I. Regret of Algorithm I is ෨𝑂 𝐾 𝐻2log Φ + 𝑆2𝐴𝐻

• If Φ = All Markov policies, Regret = ෨𝑂 𝐾𝑆2𝐴𝐻4

• Independent of the size of Ψ

• Might be too large if Φ is all general policies, when Φ = Ω 𝐴𝑆
𝐻

• Requires knowledge of Φ



Assume: Observes min-player’s policies

To compete against general policies:

Main idea: Algorithm I +Algorithm II: Adaptive Optimistic Policy EXP3
Algorithm I +
• Update model sparsely (when visitation count doubles)
• Maintain candidate set of best responses of all possible mixtures of seen 

opponent policies
• Run EXP3 on candidate set. Reset whenever it’s updated



Upper Bound II. Regret of Algorithm II is ෨𝑂 𝐾 𝑆2𝐴𝐻4 + Ψ 𝑆𝐴𝐻3 + Ψ 2𝐻2

• Compares against best general policy in hindsight

• Sublinear if Ψ = 𝑜 𝐾

• When opponent’s strategy lacks diversity or changes infrequently



Drawbacks of Algorithms

• No guarantee when |Φ| is super-exponentially large AND Ψ is 
exponentially large



Drawbacks of Algorithms

• No guarantee when |Φ| is super-exponentially large AND Ψ is 
exponentially large

→ Unavoidable in general.

• Can’t have polynomial regret in this regime (doubly-exponential 
Φ , exponential |Ψ|)

Lower Bound III. Exists MG with 𝑆 = 𝑂 1 , 𝒜 = 𝑂 1 , Φ is the set of all general 
policies, Ψ = 2𝐻, where regret is Ω min 𝐾, 2𝐻 even if opponent reveals policy.
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Drawbacks of Algorithms

• No guarantee when |Φ| is super-exponentially large AND Ψ is 
exponentially large

→ Unavoidable in general.

• Algorithm I & II have exponential runtime (linear in Φ ,
exponential in |Ψ|)

→ Unavoidable in general

Computational Lower Bound. A polynomial time algorithm with poly(𝑆, 𝐴, 𝐻)⋅ 𝐾1−𝑐

regret for a MG can be used to solve 3-SAT in polynomial time.

This holds even if the MG dynamics is known, the set Ψ is known, and policies are revealed.



Summary

Baseline Policy 𝚽 Opponent’s Policy 𝚿
Only Action 

Revealed
Full Policy Revealed

Markov Policies General Policies

NO

෨𝑂 𝐾𝑆2𝐴𝐻4

General Policies

Small Finite Class ෨𝑂 𝐾poly Ψ , 𝑆, 𝐴, 𝐻

General Policies NO

Can we achieve low regret in Markov games?

For details, join us at Poster #1111


