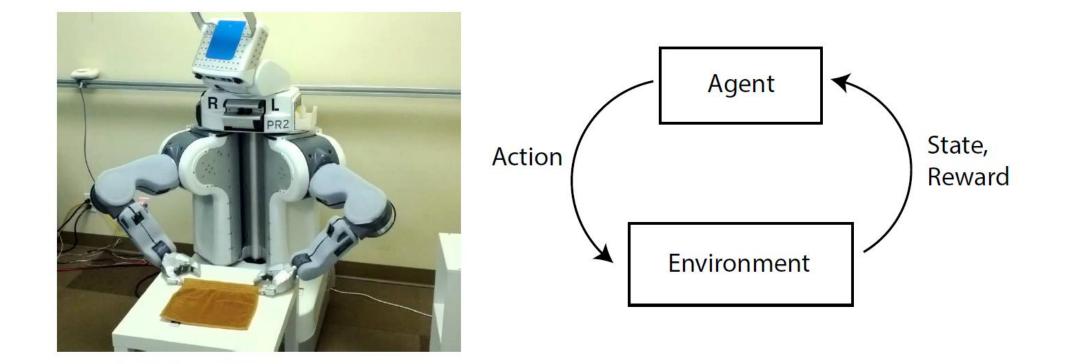
Learning Markov Games with Adversarial Opponents: Efficient Algorithms and Fundamental Limits

Qinghua Liu, **Yuanhao Wang** and Chi Jin Princeton University

Sequential Decision Making and RL



• Goal: maximize rewards in a fixed environment through learning

RL in Games

- Environment defined by opponent behavior
- Opponent can play adaptively and adversarially
- Will focus on two-player zero-sum adversarial opponents

Markov Game (MG)

- Generalization of MDP for games
- State Space S, |S| = S
- Two-player zero-sum game.
- Action space $\mathcal{A}=\mathcal{A}_{\max}\times\mathcal{A}_{\min}$, $|\mathcal{A}|=A$
- Reward: $r_h(s, a) \in [-1, 1]$
- Transition probability: $P_h(\cdot | s, a) \in \Delta_S$
- Horizon: *H*
- Episodic: $\{s_1, a_1, r_1, s_2, ..., s_H, a_H, r_H\}$, *K* episodes

Policies in Markov Game (MG)

Markov Policy $\mu_h: S \to \Delta_{\mathcal{A}_{\max}}$ General (history dependent) policy $\mu_h: (S \times \mathcal{A})^{h-1} \times S \to \Delta_{\mathcal{A}_{\max}}$

- Best response to changing series of Markov policy is general policy (in general)
- Max player policy $\mu \in \Phi$, min player policy $\nu \in \Psi$
- Algorithm picks μ to maximize $V_1^{\mu \times \nu}(s) = \mathbb{E}\left[\sum_{h'>1} r_{h'} | s_1 = s\right]$
- { μ^1 , ν^1 }, { μ^2 , ν^2 }, ..., { μ^K , ν^K }

What is a reasonable performance metric?

What is a reasonable performance metric?

- For single player MDP: optimal value function
- Standard notion in online learning:

$$\operatorname{Regret}_{\Phi} = \max_{\mu \in \Phi} \sum_{k=1}^{\kappa} \left(V_{1}^{\mu \times \nu^{k}} - V_{1}^{\mu^{k} \times \nu^{k}} \right) (s_{1})$$

• Defined against **best policy in hindsight**

What is a reasonable performance metric?

- For single player MDP: optimal value function
- Standard notion in online learning:

$$\operatorname{Regret}_{\Phi} = \max_{\mu \in \Phi} \sum_{k=1}^{K} \left(V_{1}^{\mu \times \nu^{k}} - V_{1}^{\mu^{k} \times \nu^{k}} \right) (s_{1})$$

• Defined against **best policy in hindsight**

Can we achieve no-regret in Markov games?

• Unclear even for 2-player zero-sum games

Lower Bound II. Exists MG with |S| = O(H), $|\mathcal{A}| = O(H)$, such that when Φ is the set of all Markov policies, $|\Psi| = H$ (Markov policies), regret is $\Omega(\min\{K, 2^H\})$

Lower Bound II. Exists MG with |S| = O(H), $|\mathcal{A}| = O(H)$, such that when Φ is the set of all Markov policies, $|\Psi| = H$ (Markov policies), regret is $\Omega(\min\{K, 2^H\})$

Key idea: MG adversarial opponent is general enough to simulate POMDP (Lower bound I) or latent MDPs (Lower bound II)

Lower Bound II. Exists MG with |S| = O(H), $|\mathcal{A}| = O(H)$, such that when Φ is the set of all Markov policies, $|\Psi| = H$ (Markov policies), regret is $\Omega(\min\{K, 2^H\})$

If $\Psi = \{\text{Single Markov Policy}\}, \text{ becomes standard RL } (\sqrt{\text{poly}(S, A, H)K} \text{ regret}) \}$

If H = 1, contextual bandit algorithm solves the problem ($\sqrt{\text{poly}(S, A, H)K}$ regret)

Statistical hardness of MG stems from both adversarial opponents AND sequential nature

Opponent's policy contains much information its action doesn't reveal

Assume: Observes v^k after episode k

May occur in self-play scenario

Algorithm I: Optimistic Policy EXP3

- Maintain model of MG transitions
- Optimistically evaluate values of all policies in Φ with model
- Run EXP3 on Φ using optimistic values

Upper Bound I. Regret of Algorithm I is
$$\tilde{O}\left(\sqrt{K(H^2\log|\Phi| + S^2AH)}\right)$$

• If $\Phi = All Markov policies, Regret = \tilde{O}(\sqrt{KS^2AH^4})$

Upper Bound I. Regret of Algorithm I is
$$\tilde{O}\left(\sqrt{K(H^2\log|\Phi| + S^2AH)}\right)$$

- If $\Phi = All Markov policies, Regret = \tilde{O}(\sqrt{KS^2AH^4})$
- Independent of the size of Ψ

Upper Bound I. Regret of Algorithm I is
$$\tilde{O}\left(\sqrt{K(H^2\log|\Phi| + S^2AH)}\right)$$

- If $\Phi = All Markov policies, Regret = \tilde{O}(\sqrt{KS^2AH^4})$
- Independent of the size of Ψ
- Might be too large if Φ is all general policies, when $|\Phi| = \Omega(A^{S^H})$
- Requires knowledge of Φ

To compete against general policies:

Algorithm II: Adaptive Optimistic Policy EXP3

Algorithm I +

- Update model sparsely (when visitation count doubles)
- Maintain candidate set of best responses of all possible mixtures of seen opponent policies
- Run EXP3 on candidate set. Reset whenever it's updated

Upper Bound II. Regret of Algorithm II is $\tilde{O}\left(\sqrt{K(S^2AH^4 + |\Psi|SAH^3 + |\Psi|^2H^2)}\right)$

- Compares against **best general policy in hindsight**
- Sublinear if $|\Psi| = o(\sqrt{K})$
- When opponent's strategy lacks diversity or changes infrequently

• No guarantee when $|\Phi|$ is super-exponentially large AND $|\Psi|$ is exponentially large

- No guarantee when $|\Phi|$ is super-exponentially large AND $|\Psi|$ is exponentially large
- \rightarrow Unavoidable in general.

Lower Bound III. Exists MG with |S| = O(1), $|\mathcal{A}| = O(1)$, Φ is the set of all general policies, $|\Psi| = 2^{H}$, where regret is $\Omega(\min\{K, 2^{H}\})$ even if opponent reveals policy.

• Can't have polynomial regret in this regime (doubly-exponential $|\Phi|$, exponential $|\Psi|$)

- No guarantee when $|\Phi|$ is super-exponentially large AND $|\Psi|$ is exponentially large
- \rightarrow Unavoidable in general.
- Algorithm I & II have exponential runtime (linear in $|\Phi|,$ exponential in $|\Psi|)$

- No guarantee when $|\Phi|$ is super-exponentially large AND $|\Psi|$ is exponentially large
- \rightarrow Unavoidable in general.
- Algorithm I & II have exponential runtime (linear in $|\Phi|,$ exponential in $|\Psi|)$
- \rightarrow Unavoidable in general

Computational Lower Bound. A polynomial time algorithm with poly(S, A, H)· K^{1-c} regret for a MG can be used to solve 3-SAT in polynomial time.

This holds even if the MG dynamics is known, the set Ψ is known, and policies are revealed.

Summary

Can we achieve low regret in Markov games?

Baseline Policy ${f \Phi}$	Opponent's Policy Ψ	Only Action Revealed	Full Policy Revealed
Markov Policies	General Policies	NO	$\tilde{O}\left(\sqrt{KS^2AH^4}\right)$
General Policies	Small Finite Class		$\tilde{O}\left(\sqrt{K}\operatorname{poly}(\Psi , S, A, H)\right)$
	General Policies		NO

For details, join us at Poster #1111