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The Mission: Towards the Science of Al

Nowadays deep learning is like physics in/before the time of Galileo.
@ People empirically observed many interesting things.

@ No mathematical theory for most things.

Figure: From the time of Galileo to the time of Newton.

| hope to find a way towards the time of Newton for Al.
@ Science not only explains what works but also predicts what will work.
@ Science gives quantitative and trustworthy results.

© Science constructs complex principles from first principles.



Science of Deep Learning Dynamics

: proposed a physics-inspired diffusion
theory for SGD dynamics.

Along this approach, we further analyze why Adam often
converges faster but generalizes worse than SGD in this work.

@ Theory for Momentum and Adam dynamics.
Adam can escape saddle points efficiently, but cannot favor
flat minima as well as SGD.

o New Optimizer: Adaptive Inertia Optimizer (Adai).

Adai can escape saddle points efficiently like Adam and select
flat minima like SGD.



Diffusion Theory for SGD Dynamics

@ SGD as continuous-time Langevin Dynamics:
_8L(0)
00

where dW; ~ N (0, Idt) is a Wiener process and D(#) is the
diffusion matrix.

do =

dt + [2D(0)]2 dW, (1)

@ The associated Fokker-Planck Equation:

OP(0,t
(gt’) =V [P(0,t)VLO)]+ V- -VD(0)P(0,1t) (2)
@ The dynamics of # — the diffusion of probability density
P(0.t)

@ A physical example: Brownian motion of zero-inertia particles.
@ Q: Why Langevin Dynamics?
A: Predicting 0 is intractable, while predicting the distribution of 6
is tractable by Langevin Dynamics.



Momentum and Adam

Momentum, known as SGD Momentum or Heavy Ball
, uses moving average of past gradients for training.

e A dynamical perspective Algorithm 1: Momentum

-SGD: a zero-inertia particle. gt = VL(0:-1);
-Momentum: a finite-inertia my = Bime_1 + P3g:;
particle. 0y = 0i_1 — nmy;

Adam = Momentum + Adaptive Learning Rate.
Algorithm 2: Adam

Adam combines: gt = VL(0:-1);
@ Momentum: finite inertia me = Bim; 1+ (1 — B1)gr;
@ Adaptive Learning Rate: Ve = 52,:“1 +(1- et
anisotropic step sizes (time Me = 1—723{;
unit) Ve = 17‘/7%5;

0 =01 — ﬁfﬁt;




The Fokker-Planck Equation for Adam

Inspired by the Newtonian Motion Equation with finite inertia and
damping, we obtain the finite-inertia Langevin Dynamics

aL()

Mdr = —~Md6 —
=7 o0

dt + [2D]2 dW. (3)

<= the phase-space Fokker-Planck Equation (the 6-r space) as

OP(0,r,t)

ot :_VQ'[rP(evr’t)]—i_

V- [yr+ M7IVeL(0)] P(O,r, t)+
V,-M™2D.V,P(8,r,t) (4)

where the mass M = % and the damping coefficient v = 15
(which are all decided by the hyperparameters of deep learning).
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Understanding Adam Dynamics

Question: Why does Adam often converge faster but generalize
worse than SGD?

Answer: Adam can escape saddle points efficiently, but cannot
favor flat minima as well as SGD.

We focus on
@ Saddle-point escaping <= Convergence speed.

@ Minima selection <= Generalization.



Escape Saddle Points

@ Saddle-point escaping, particularly along very flat directions.

o Problem Setting: we consider a particle escaping from saddle
points.

e How does the mean squared displacement after certain
iterations depend on the Hessian?

How to escape saddle points where gradients are small?
© Langevin Diffusion helps escape saddle points.
e The diffusion effect: noise matters.
© The momentum inertia helps escape saddle points.
o The drift effect: momentum matters.



Escape Saddle Points: Adam>Momentum>SGD

@ SGD: the diffusion effect only.

Hiln*T
@a6p) = T o(a 12 T),

where <A6’?) is the mean squared displacement and T is the number of iterations.

@ Momentum: the diffusion effect and the drift effect.
| H;| 857
2(1—p1)3B
|HilB3m* T
B(1 — 31)?
@ Adam: the diffusion effect and the drift effect, which are

Hessian-independent.

(A07) = [1—exp(—(1-B) T+

+ O(B7tH3 T2).

2
(A) =5y L - e (—(L =) T+ T

+ O(\/B|Hi|n3T?).



Minima Selection as a Kramers Escape Problem

How to describe the escape process from a valley?
° . the diffusion model of chemical reactions
@ The escape rate corresponds to the chemical reaction rate.

@ The escape rate corresponds to the minima transition rate.
@ How many iterations does it take to escape the given valley?
e SGD is good at escaping sharp minima, while Adam is not.
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Select Flat Minima: Momentum~ SGD > Adam

@ SGD generalizes well.

log() = O (

where T is the mean escape time, AL is the loss barrier,

ZBAL>
77Hae

and Hge is the minima Hessian eigenvalue along the escape direction.

@ Momentum matters little to the mean escape time. Thus,
Momentum generalizes well.

log(r) = O (2(1—61)BAL>

5377Hae

@ Adam cannot escape sharp minima efficiently as SGD. Thus.
Adam generalizes worse.

2vBAL
log(7) = O (W"Tm)
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Adaptive Inertia Optimizer (Adai)

@ May we design better optimizers that escape saddle points
efficiently and select flat minima well?

o Adaptive Inertia uses
adaptive momentum
hyperapermeters for
different directions.

e Large inertia along flat
directions — large drift
effects

Algorithm 3: Adai

8t = VL(Qt—l);

vi = Bove—1 + (1 — B2)g?
. — Vi .

Vi = 1—,85’

Ve = mean(Ot)
pe = (1— —vt) Clip(0,1—¢);
me = peme—1 + (1 — pe)ge;

m¢ .
1 Hz—l uz'
Oy = 0:—1 — nriy;

@ Adai can escape saddle points efficiently like Adam and select

flat minima well like SGD.
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Empirical Analysis: The Mean Escape Time

@ Adam generalizes worse than SGD(/Momentum).
o Adam: log(7) ~ k~z.

o Adai generalizes well.
o Adai/Momentum: log(7) ~ k1.

2 —— Adai, Pearson:0.9964

6: — Adam, Pearson:0.9977
— Momentum, Pearson:0.9981 90

~log()

03 04 05 06 07 08 09 10 02 04 06 08 10 03 04 05 06 07 08 09 10
P N pe

(a) Adai/SGD: k™ (b) Adam: k1 (c) Adam: k2
Figure: Flat Minima Selection: Adai ~ SGD(/Momentum) > Adam.

Note that k measure the minima sharpness, while the mean escape time
T measures the number of iterations of escaping the given loss valley.
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The superiority of Adai

Table: Test performance comparison of optimizers across models and

datasets.
DATASET MobEL ‘ ADATW ADAIL SGD M Apam AMSGRAD  ADAMW  ADABOUND PADAM Yoat RADAM
CIFAR-10 RESNET18 4.59; 15 4.740 .14 5.01p.03 6.530.03 6.160.18 5.080.07 5.650.08 5.129.04 5.870.12 6.019.10
VGG16 58107 6.00000 6420, 7.3los  7.l4g1s 648013  6.760.12 6.15005 6.90022  6.560.04
CIFAR-100 3 21.05010 207902 21.5203 27.16055 25.53010 2299040 22.87013 227210 2357012 2441040
19445, 195935 19.81p33 25.11p15 24.43p09 2155014 22.699 15 21.10023 22.15036 22.2709.22
20.50025 20.55032 21.21g29 26.12p33 25.53017 2129917 23.18031 21.82517 24.24916 22.23g15

Please refer to our paper for more empirical results.



@ Adai: A novel adaptive optimization framework, which
element-wisely adjust the momentum hyperparameters instead
of learning rates.

@ Adai can escape saddle points efficiently like Adam and select
flat minima well like SGD.

“Science not only explains what works but also predicts what will work.”

Table: Adaptive Learning Rate versus Adaptive Inertia.

‘ SGD ‘ Adaptive Learning Rate ‘ Adaptive Inertia
Saddle-Escaping ‘ Slow % ‘ Fast v/ ‘ Fast ¢/
Minima Selection ‘ Flat v/ ‘ Sharp X ‘ Flat ¢/
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