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The Mission: Towards the Science of AI

Nowadays deep learning is like physics in/before the time of Galileo.

1 People empirically observed many interesting things.

2 No mathematical theory for most things.

Figure: From the time of Galileo to the time of Newton.

I hope to find a way towards the time of Newton for AI.

1 Science not only explains what works but also predicts what will work.

2 Science gives quantitative and trustworthy results.

3 Science constructs complex principles from first principles.

2 / 15



Science of Deep Learning Dynamics

(Xie et al., ICLR 2021): proposed a physics-inspired diffusion
theory for SGD dynamics.
Zeke Xie, Issei Sato, and Masashi Sugiyama. A Diffusion Theory For Deep Learning

Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima. ICLR2021.

Along this approach, we further analyze why Adam often
converges faster but generalizes worse than SGD in this work.

Theory for Momentum and Adam dynamics.
Adam can escape saddle points efficiently, but cannot favor
flat minima as well as SGD.

New Optimizer: Adaptive Inertia Optimizer (Adai).
Adai can escape saddle points efficiently like Adam and select
flat minima like SGD.
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Diffusion Theory for SGD Dynamics

SGD as continuous-time Langevin Dynamics:

dθ = −∂L(θ)

∂θ
dt + [2D(θ)]

1
2 dWt , (1)

where dWt ∼ N (0, Idt) is a Wiener process and D(θ) is the
diffusion matrix.

The associated Fokker-Planck Equation:

∂P(θ, t)

∂t
= ∇ · [P(θ, t)∇L(θ)] +∇ · ∇D(θ)P(θ, t) (2)

The dynamics of θ → the diffusion of probability density
P(θ, t)

A physical example: Brownian motion of zero-inertia particles.

Q: Why Langevin Dynamics?
A: Predicting θ is intractable, while predicting the distribution of θ
is tractable by Langevin Dynamics.
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Momentum and Adam

Momentum, known as SGD Momentum or Heavy Ball(Zavriev et

al., 1993), uses moving average of past gradients for training.

A dynamical perspective
-SGD: a zero-inertia particle.
-Momentum: a finite-inertia
particle.

Algorithm 1: Momentum

gt = ∇L(θt−1);
mt = β1mt−1 + β3gt ;
θt = θt−1 − ηmt ;

Adam = Momentum + Adaptive Learning Rate.

Adam combines:

1 Momentum: finite inertia

2 Adaptive Learning Rate:
anisotropic step sizes (time
unit)

Algorithm 2: Adam

gt = ∇L(θt−1);
mt = β1mt−1 + (1− β1)gt ;
vt = β2vt−1 + (1− β2)g2

t ;
m̂t = mt

1−βt
1
;

v̂t = vt
1−βt

2
;

θt = θt−1 − η√
v̂t+ε

m̂t ;
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The Fokker-Planck Equation for Adam

Inspired by the Newtonian Motion Equation with finite inertia and
damping, we obtain the finite-inertia Langevin Dynamics

Mdr = −γMdθ − ∂L(θ)

∂θ
dt + [2D]

1
2 dWt . (3)

⇐⇒ the phase-space Fokker-Planck Equation (the θ-r space) as

∂P(θ, r , t)

∂t
=−∇θ · [rP(θ, r , t)]+

∇r ·
[
γr + M−1∇θL(θ)

]
P(θ, r , t)+

∇r ·M−2D · ∇rP(θ, r , t) (4)

where the mass M = η
β3

and the damping coefficient γ = 1−β1
η

(which are all decided by the hyperparameters of deep learning).
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Understanding Adam Dynamics

Question: Why does Adam often converge faster but generalize
worse than SGD?

Answer: Adam can escape saddle points efficiently, but cannot
favor flat minima as well as SGD.

We focus on

Saddle-point escaping ⇐⇒ Convergence speed.

Minima selection ⇐⇒ Generalization.
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Escape Saddle Points

Saddle-point escaping, particularly along very flat directions.

Problem Setting: we consider a particle escaping from saddle
points.
How does the mean squared displacement after certain
iterations depend on the Hessian?

How to escape saddle points where gradients are small?
1 Langevin Diffusion helps escape saddle points.

The diffusion effect: noise matters.

2 The momentum inertia helps escape saddle points.

The drift effect: momentum matters.
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Escape Saddle Points: Adam>Momentum>SGD

SGD: the diffusion effect only.

〈∆θ2
i 〉 =

|Hi |η2T

B
+O(B−1H2

i η
3T 2),

where 〈∆θ2
i 〉 is the mean squared displacement and T is the number of iterations.

Momentum: the diffusion effect and the drift effect.

〈∆θ2
i 〉 =

|Hi |β2
3η

2

2(1− β1)3B
[1− exp (−(1− β1)T )]2+

|Hi |β2
3η

2T

B(1− β1)2
+O(B−1H2

i η
3T 2).

Adam: the diffusion effect and the drift effect, which are
Hessian-independent.

〈∆θ2
i 〉 =

η2

2(1− β1)
[1− exp (−(1− β1)T )]2 + η2T

+O(
√

B|Hi |η3T 2).
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Minima Selection as a Kramers Escape Problem

How to describe the escape process from a valley?

(Kramers, 1940): the diffusion model of chemical reactions

The escape rate corresponds to the chemical reaction rate.
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Energy Landscape

The escape rate corresponds to the minima transition rate.
How many iterations does it take to escape the given valley?

SGD is good at escaping sharp minima, while Adam is not.
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Select Flat Minima: Momentum≈ SGD > Adam

SGD generalizes well. (Xie et al., ICLR 2021)

log(τ) = O
(

2B∆L

ηHae

)
where τ is the mean escape time, ∆L is the loss barrier,

and Hae is the minima Hessian eigenvalue along the escape direction.

Momentum matters little to the mean escape time. Thus,
Momentum generalizes well.

log(τ) = O
(

2(1− β1)B∆L

β3ηHae

)
Adam cannot escape sharp minima efficiently as SGD. Thus.
Adam generalizes worse.

log(τ) = O

(
2
√
B∆L

η
√
Hae

)
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Adaptive Inertia Optimizer (Adai)

May we design better optimizers that escape saddle points
efficiently and select flat minima well?

Adaptive Inertia uses
adaptive momentum
hyperapermeters for
different directions.

Large inertia along flat
directions → large drift
effects

Algorithm 3: Adai

gt = ∇L(θt−1);
vt = β2vt−1 + (1− β2)g2

t ;
v̂t = vt

1−βt
2
;

v̄t = mean(v̂t);

µt = (1− β0
v̄t
v̂t).Clip(0, 1− ε);

mt = µtmt−1 + (1− µt)gt ;
m̂t = mt

1−
∏t

z=1 µz
;

θt = θt−1 − ηm̂t ;

Adai can escape saddle points efficiently like Adam and select
flat minima well like SGD.
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Empirical Analysis: The Mean Escape Time

Adam generalizes worse than SGD(/Momentum).

Adam: log(τ) ∼ k− 1
2 .

Adai generalizes well.
Adai/Momentum: log(τ) ∼ k−1.
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(a) Adai/SGD: k−1
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(b) Adam: k−1
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Figure: Flat Minima Selection: Adai ≈ SGD(/Momentum)� Adam.
Note that k measure the minima sharpness, while the mean escape time
τ measures the number of iterations of escaping the given loss valley.
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The superiority of Adai

Table: Test performance comparison of optimizers across models and
datasets.

Dataset Model AdaiW Adai SGD M Adam AMSGrad AdamW AdaBound Padam Yogi RAdam

CIFAR-10 ResNet18 4.590.16 4.740.14 5.010.03 6.530.03 6.160.18 5.080.07 5.650.08 5.120.04 5.870.12 6.010.10

VGG16 5.810.07 6.000.09 6.420.02 7.310.25 7.140.14 6.480.13 6.760.12 6.150.06 6.900.22 6.560.04

CIFAR-100 ResNet34 21.050.10 20.790.22 21.520.37 27.160.55 25.530.19 22.990.40 22.870.13 22.720.10 23.570.12 24.410.40

DenseNet121 19.440.21 19.590.38 19.810.33 25.110.15 24.430.09 21.550.14 22.690.15 21.100.23 22.150.36 22.270.22

GoogLeNet 20.500.25 20.550.32 21.210.29 26.120.33 25.530.17 21.290.17 23.180.31 21.820.17 24.240.16 22.230.15

Please refer to our paper for more empirical results.
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Summary

1 Adai: A novel adaptive optimization framework, which
element-wisely adjust the momentum hyperparameters instead
of learning rates.

2 Adai can escape saddle points efficiently like Adam and select
flat minima well like SGD.

“Science not only explains what works but also predicts what will work.”

Table: Adaptive Learning Rate versus Adaptive Inertia.

SGD Adaptive Learning Rate Adaptive Inertia

Saddle-Escaping Slow $ Fast " Fast "

Minima Selection Flat " Sharp $ Flat "
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