Adaptive Inertia: Disentangling the Effects of Adaptive Learning Rate and Momentum

Zeke Xie 1,2 , Xinrui Wang 1 , Huishuai Zhang 3 , Issei Sato 1 , and Masashi Sugiyama 2,1

¹The University of Tokyo ²RIKEN Center for AIP ³Microsoft Research Asia

ICML 2022, Long Presentation

The Mission: Towards the Science of Al

Nowadays deep learning is like physics in/before the time of Galileo.

- People empirically observed many interesting things.
- No mathematical theory for most things.

Figure: From the time of Galileo to the time of Newton.

I hope to find a way towards the time of Newton for AI.

- Science not only explains what works but also predicts what will work.
- Science gives quantitative and trustworthy results.
- 3 Science constructs complex principles from first principles.

Science of Deep Learning Dynamics

(Xie et al., ICLR 2021): proposed a physics-inspired diffusion theory for SGD dynamics.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A Diffusion Theory For Deep Learning Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima. ICLR2021.

Along this approach, we further analyze why Adam often converges faster but generalizes worse than SGD in this work.

- Theory for Momentum and Adam dynamics.
 Adam can escape saddle points efficiently, but cannot favor flat minima as well as SGD.
- New Optimizer: Adaptive Inertia Optimizer (Adai).
 Adai can escape saddle points efficiently like Adam and select flat minima like SGD.

Diffusion Theory for SGD Dynamics

SGD as continuous-time Langevin Dynamics:

$$d\theta = -\frac{\partial L(\theta)}{\partial \theta} dt + [2D(\theta)]^{\frac{1}{2}} dW_t, \tag{1}$$

where $dW_t \sim \mathcal{N}(0, Idt)$ is a Wiener process and $D(\theta)$ is the diffusion matrix.

The associated Fokker-Planck Equation:

$$\frac{\partial P(\theta, t)}{\partial t} = \nabla \cdot [P(\theta, t) \nabla L(\theta)] + \nabla \cdot \nabla D(\theta) P(\theta, t)$$
 (2)

- ullet The dynamics of heta o the diffusion of probability density P(heta,t)
- A physical example: Brownian motion of zero-inertia particles.
- Q: Why Langevin Dynamics?
 A: Predicting θ is intractable, while predicting the distribution of θ is tractable by Langevin Dynamics.

Momentum and Adam

Momentum, known as SGD Momentum or Heavy Ball(Zavriev et al., 1993), uses moving average of past gradients for training.

- A dynamical perspective
 - -SGD: a zero-inertia particle.
 - -Momentum: a finite-inertia particle.

Algorithm 1: Momentum

$$g_t = \nabla L(\theta_{t-1});$$

$$m_t = \beta_1 m_{t-1} + \beta_3 g_t;$$

$$\theta_t = \theta_{t-1} - \eta m_t;$$

Adam = Momentum + Adaptive Learning Rate.

Adam combines:

- Momentum: finite inertia
- Adaptive Learning Rate: anisotropic step sizes (time unit)

Algorithm 2: Adam

$$g_t =
abla L(heta_{t-1}); \ m_t = eta_1 m_{t-1} + (1 - eta_1) g_t; \ v_t = eta_2 v_{t-1} + (1 - eta_2) g_t^2; \ \hat{m}_t = rac{m_t}{1 - eta_1^t}; \ \hat{v}_t = rac{v_t}{1 - eta_2^t}; \ heta_t = heta_{t-1} - rac{\eta}{\sqrt{\hat{v}_t + \epsilon}} \hat{m}_t;$$

The Fokker-Planck Equation for Adam

Inspired by the Newtonian Motion Equation with finite inertia and damping, we obtain the finite-inertia Langevin Dynamics

$$Mdr = -\gamma Md\theta - \frac{\partial L(\theta)}{\partial \theta} dt + [2D]^{\frac{1}{2}} dW_t.$$
 (3)

 \iff the phase-space Fokker-Planck Equation (the θ -r space) as

$$\frac{\partial P(\theta, r, t)}{\partial t} = -\nabla_{\theta} \cdot [rP(\theta, r, t)] +
\nabla_{r} \cdot [\gamma r + M^{-1} \nabla_{\theta} L(\theta)] P(\theta, r, t) +
\nabla_{r} \cdot M^{-2} D \cdot \nabla_{r} P(\theta, r, t)$$
(4)

where the mass $M=\frac{\eta}{\beta_3}$ and the damping coefficient $\gamma=\frac{1-\beta_1}{\eta}$ (which are all decided by the hyperparameters of deep learning).

Understanding Adam Dynamics

Question: Why does Adam often converge faster but generalize worse than SGD?

Answer: Adam can escape saddle points efficiently, but cannot favor flat minima as well as SGD.

We focus on

- Saddle-point escaping ←⇒ Convergence speed.
- Minima selection ←⇒ Generalization.

Escape Saddle Points

- Saddle-point escaping, particularly along very flat directions.
 - Problem Setting: we consider a particle escaping from saddle points.
 - How does the mean squared displacement after certain iterations depend on the Hessian?

How to escape saddle points where gradients are small?

- Langevin Diffusion helps escape saddle points.
 - The diffusion effect: noise matters.
- The momentum inertia helps escape saddle points.
 - The drift effect: momentum matters.

Escape Saddle Points: Adam>Momentum>SGD

• SGD: the diffusion effect only.

$$\langle \Delta \theta_i^2 \rangle = \frac{|\mathcal{H}_i| \eta^2 T}{B} + \mathcal{O}(B^{-1} \mathcal{H}_i^2 \eta^3 T^2),$$

where $\langle \Delta \theta_i^2 \rangle$ is the mean squared displacement and T is the number of iterations.

Momentum: the diffusion effect and the drift effect.

$$\langle \Delta \theta_i^2 \rangle = \frac{|H_i| \beta_3^2 \eta^2}{2(1 - \beta_1)^3 B} [1 - \exp(-(1 - \beta_1)T)]^2 + \frac{|H_i| \beta_3^2 \eta^2 T}{B(1 - \beta_1)^2} + \mathcal{O}(B^{-1} H_i^2 \eta^3 T^2).$$

 Adam: the diffusion effect and the drift effect, which are Hessian-independent.

$$\begin{split} \langle \Delta \theta_i^2 \rangle = & \frac{\eta^2}{2(1-\beta_1)} \left[1 - \exp\left(-(1-\beta_1)T \right) \right]^2 + \eta^2 T \\ & + \mathcal{O}(\sqrt{B|H_i|}\eta^3 T^2). \end{split}$$

Minima Selection as a Kramers Escape Problem

How to describe the escape process from a valley?

- (Kramers, 1940): the diffusion model of chemical reactions
- The escape rate corresponds to the chemical reaction rate.

- The escape rate corresponds to the minima transition rate.
- How many iterations does it take to escape the given valley?
 - SGD is good at escaping sharp minima, while Adam is not.

Select Flat Minima: Momentum≈ SGD > Adam

• SGD generalizes well. (Xie et al., ICLR 2021)

$$\log(\tau) = \mathcal{O}\left(\frac{2B\Delta L}{\eta H_{ae}}\right)$$

where τ is the mean escape time, ΔL is the loss barrier, and H_{ae} is the minima Hessian eigenvalue along the escape direction.

 Momentum matters little to the mean escape time. Thus, Momentum generalizes well.

$$\log(\tau) = \mathcal{O}\left(\frac{2(1-\beta_1)B\Delta L}{\beta_3\eta H_{ae}}\right)$$

Adam cannot escape sharp minima efficiently as SGD. Thus.
 Adam generalizes worse.

$$\log(\tau) = \mathcal{O}\left(\frac{2\sqrt{B}\Delta L}{\eta\sqrt{\textit{H}_{ae}}}\right)$$

Adaptive Inertia Optimizer (Adai)

 May we design better optimizers that escape saddle points efficiently and select flat minima well?

- Adaptive Inertia uses adaptive momentum hyperapermeters for different directions.
- Large inertia along flat directions → large drift effects

Algorithm 3: Adai

$$\begin{split} &g_t = \nabla L(\theta_{t-1}); \\ &v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2; \\ &\hat{v}_t = \frac{v_t}{1-\beta_2^t}; \\ &\bar{v}_t = mean(\hat{v}_t); \\ &\mu_t = (1-\frac{\beta_0}{\bar{v}_t}\hat{v}_t). \textit{Clip}(0,1-\epsilon); \\ &m_t = \mu_t m_{t-1} + (1-\mu_t) g_t; \\ &\hat{m}_t = \frac{m_t}{1-\prod_{z=1}^t \mu_z}; \\ &\theta_t = \theta_{t-1} - \eta \hat{m}_t; \end{split}$$

 Adai can escape saddle points efficiently like Adam and select flat minima well like SGD.

Empirical Analysis: The Mean Escape Time

- Adam generalizes worse than SGD(/Momentum).
 - Adam: $\log(\tau) \sim k^{-\frac{1}{2}}$.
- Adai generalizes well.
 - Adai/Momentum: $\log(\tau) \sim k^{-1}$.

Figure: Flat Minima Selection: $Adai \approx SGD(/Momentum) \gg Adam$. Note that k measure the minima sharpness, while the mean escape time τ measures the number of iterations of escaping the given loss valley.

The superiority of Adai

Table: Test performance comparison of optimizers across models and datasets.

Dataset	Model	AdaiW	Adai	${\rm SGD}\ {\rm M}$	Adam	${\bf AMSGrad}$	AdamW	AdaBound	Padam	Yogi	RAdam
CIFAR-10	RESNET18	4.59 _{0.16}	4.74 _{0.14}	5.01 _{0.03}	6.53 _{0.03}	6.16 _{0.18}	5.08 _{0.07}	5.65 _{0.08}	5.12 _{0.04}	5.87 _{0.12}	6.01 _{0.10}
	VGG16	5.81 _{0.07}	6.00 _{0.00}	6.42 _{0.02}	7.31 _{0.25}	7.14 _{0.14}	6.48 _{0.13}	6.76 _{0.12}	6.15 _{0.06}	6.90 _{0.22}	6.56 _{0.04}
CIFAR-100	ResNet34	21.050.10	20.790.22	21.520.37	27.160.55	25.530.19	22.990.40	22.870.13	22.720.10	23.570.12	24.41 _{0.40}
	DenseNet121	19.44 _{0.21}	19.59 _{0.38}	19.81 _{0.33}	25.11 _{0.15}	24.43 _{0.09}	21.55 _{0.14}	22.69 _{0.15}	21.10 _{0.23}	22.15 _{0.36}	22.27 _{0.22}
	GoogLeNet	20.50 _{0.25}	20.55 _{0.32}	21.21 _{0.29}	26.12 _{0.33}	25.53 _{0.17}	21.29 _{0.17}	23.18 _{0.31}	21.82 _{0.17}	24.24 _{0.16}	22.23 _{0.15}

Please refer to our paper for more empirical results.

Summary

- Adai: A novel adaptive optimization framework, which element-wisely adjust the momentum hyperparameters instead of learning rates.
- Adai can escape saddle points efficiently like Adam and select flat minima well like SGD.

Table: Adaptive Learning Rate versus Adaptive Inertia.

	SGD	Adaptive Learning Rate	Adaptive Inertia
Saddle-Escaping	Slow 🗙	Fast 🗸	Fast 🗸
Minima Selection	Flat 🗸	Sharp 🗙	Flat 🗸

[&]quot;Science not only explains what works but also predicts what will work."