Exact Optimal Accelerated Complexity for Fixed-Point Iterations

Jisun Park ${ }^{1}$ and Ernest K. Ryu ${ }^{1}$
Long Presentation
International Conference on Machine Learning, 2022

[^0]
Fixed-point iteration

Fixed-point iteration with $\mathbb{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ computes

$$
x_{k+1}=\mathbb{T} x_{k}
$$

with some starting point $x_{0} \in \mathbb{R}^{n}$.

Rubric: Formulate solution as fixed point of an operator and perform the fixed-point iteration.

Ubiquitous throughout applied mathematics, science, engineering, and machine learning. However, the computational complexity of the abstract fixed-point iteration has not been studied extensively.

Question) What is the optimal (accelerated) iteration complexity of fixed-point iterations?

Fixed-point problem \Leftrightarrow Monotone inclusion problem

Our analysis relies on the following equivalence.

Fixed-point problem

$$
\operatorname{find}_{y \in \mathbb{R}^{n}} \quad y=\mathbb{T} y
$$

with $1 / \gamma$-Lipschitz $\mathbb{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (with $\gamma \geq 1$) is equivalent to monotone inclusion problem

$$
\operatorname{find}_{x \in \mathbb{R}^{n}} 0 \in \mathbb{A} x
$$

with maximal μ-strongly monotone $\mathbb{A}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ (with $\mu \geq 0$).
Lemma
With $\gamma=1+2 \mu$, there is a one-to-one correspondence
$\mathbb{A}=\left(\mathbb{T}+\frac{1}{\gamma} \mathbb{I}\right)^{-1}\left(1+\frac{1}{\gamma}\right)-\mathbb{I} \quad \Leftrightarrow \quad \mathbb{T}=\left(1+\frac{1}{1+2 \mu}\right) \mathbf{J}_{\mathbf{A}}-\frac{1}{1+2 \mu} \mathbb{I}$
and x_{\star} is a zero of \mathbb{A} if and only if it is a fixed point of \mathbb{T}.

Outline

Exact optimal methods (upper bound)

Complexity lower bound

Acceleration under Hölder-type growth condition

Experiments

Exact optimal methods

Optimal Contractive Halpern (OC-Halpern):

$$
\begin{equation*}
y_{k}=\left(1-\frac{1}{\varphi_{k}}\right) \mathbb{T} y_{k-1}+\frac{1}{\varphi_{k}} y_{0} \tag{OC-Halpern}
\end{equation*}
$$

where \mathbb{T} is $1 / \gamma$-contractive, $\varphi_{k}=\sum_{i=0}^{k} \gamma^{2 i}$, and y_{0} is a starting point.
Optimal Strongly-monotone Proximal Point Method (OS-PPM):

$$
\begin{aligned}
& x_{k}=\mathbb{J}_{\mathrm{A}} y_{k-1} \quad \text { (OS-PPM) } \\
& y_{k}=x_{k}+\frac{\varphi_{k-1}-1}{\varphi_{k}}\left(x_{k}-x_{k-1}\right)-\frac{2 \mu \varphi_{k-1}}{\varphi_{k}}\left(y_{k-1}-x_{k}\right)+\frac{(1+2 \mu) \varphi_{k-2}}{\varphi_{k}}\left(y_{k-2}-x_{k-1}\right)
\end{aligned}
$$

where \mathbb{A} is maximal μ-strongly monotone, $\varphi_{k}=\sum_{i=0}^{k}(1+2 \mu)^{2 i}$, $\varphi_{-1}=0$, and $x_{0}=y_{0}=y_{-1}$ is a starting point.

Exact optimal methods

These two methods are equivalent:

$$
\begin{equation*}
y_{k}=\left(1-\frac{1}{\varphi_{k}}\right) \mathbb{T} y_{k-1}+\frac{1}{\varphi_{k}} y_{0} \tag{OC-Halpern}
\end{equation*}
$$

$$
\begin{aligned}
& x_{k}=\mathbf{J}_{\mathrm{A}} y_{k-1} \\
& y_{k}=x_{k}+\frac{\varphi_{k-1}-1}{\varphi_{k}}\left(x_{k}-x_{k-1}\right)-\frac{2 \mu \varphi_{k-1}}{\varphi_{k}}\left(y_{k-1}-x_{k}\right)+\frac{(1+2 \mu-P P M)}{\varphi_{k}}\left(\varphi_{k-2}-x_{k-1}\right)
\end{aligned}
$$

Lemma
The y_{k}-iterates of (OC-Halpern) and (OS-PPM) are identical provided they start from the same initial point y_{0}.

Accelerated rate (exact optimal)

Theorem
Let $\mathbb{A}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ be maximal μ-strongly monotone with $\mu \geq 0$. (OS-PPM) exhibits the rate

$$
\left\|\tilde{\mathbf{A}} x_{N}\right\|^{2} \leq\left(\frac{1}{\sum_{k=0}^{N-1}(1+2 \mu)^{k}}\right)^{2}\left\|y_{0}-x_{\star}\right\|^{2}
$$

where $\tilde{\mathrm{A}} x_{N}=x_{N-1}-x_{N}$.

This is the fastest rate. When $\mu=0$, the rate

$$
\left\|\tilde{\mathrm{A}} x_{N}\right\|^{2} \leq \mathcal{O}\left(1 / N^{2}\right)
$$

is faster than the $\mathcal{O}(1 / N)$ rate for (unaccelerated) PPM.
$\mathcal{O}\left(1 / N^{2}\right)$ rate due to (Kim 2021). Rate for $\mu>0$ is new.
Kim, Accelerated proximal point method for maximally monotone operators, MPA, 2021.

Exact optimal methods (upper bound)

Accelerated rate (exact optimal)

Corollary

Let $\mathbb{T}: \mathbb{R} \rightarrow \mathbb{R}$ be γ^{-1}-contractive with $\gamma \geq 1$. (OC-Halpern) exhibits the rate

$$
\left\|y_{N}-\mathbb{T} y_{N}\right\|^{2} \leq\left(1+\frac{1}{\gamma}\right)^{2}\left(\frac{1}{\sum_{k=0}^{N} \gamma^{k}}\right)^{2}\left\|y_{0}-y_{\star}\right\|^{2}
$$

This is the fastest rate. When $\gamma=1$, the rate

$$
\left\|y_{N}-\mathbb{T} y_{N}\right\|^{2} \leq \mathcal{O}\left(1 / N^{2}\right)
$$

is faster than the $\mathcal{O}(1 / N)$ rate for plain (KM) fixed-point iteration.
$\mathcal{O}\left(1 / N^{2}\right)$ rate due to (Lieder 2021). Rate for $\gamma>1$ is new.
Lieder, On the convergence rate of the Halpern-iteration. OPTL, 2021.

Outline

Exact optimal methods (upper bound)

Complexity lower bound

Acceleration under Hölder-type growth condition

Experiments

Exact optimality

Theorem

For $n \geq N+1$, there exists an $1 / \gamma$-Lipschitz operator $\mathbb{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with a fixed point $y_{\star} \in$ Fix \mathbb{T} such that

$$
\left\|y_{N}-\mathbb{T} y_{N}\right\|^{2} \geq\left(1+\frac{1}{\gamma}\right)^{2}\left(\frac{1}{\sum_{k=0}^{N} \gamma^{k}}\right)^{2}\left\|y_{0}-y_{\star}\right\|^{2}
$$

for any iterates $\left\{y_{k}\right\}_{k=0}^{N}$ satisfying

$$
y_{k} \in y_{0}+\operatorname{span}\left\{y_{0}-\mathbb{T} y_{0}, y_{1}-\mathbb{T} y_{1}, \ldots, y_{k-1}-\mathbb{T} y_{k-1}\right\}
$$

for $k=1, \ldots, N$.

Lower bound matches upper bound exactly.
$\Theta\left(1 / N^{2}\right)$ lower bound for $\gamma=1$ due to (Diakonikolas 2020), but our bound improves the constant by a factor of about 80 . Lower bound for $\gamma>1$ is new. Diakonikolas, Halpern iteration for near-optimal and parameter-free monotone inclusion and strong solutions to variational inequalities, COLT, 2020.

Construction of worst-case operator

Lemma
\mathbb{T} is $\frac{1}{\gamma}$-contractive if and only if $\mathbb{G}=\frac{\gamma}{1+\gamma}(\mathbb{I}-\mathbb{T})$ is $\frac{1}{1+\gamma}$-averaged.
Lemma
Let $R>0$. Define $\mathbb{N}, \mathbb{G}: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^{N+1}$ as

$$
\begin{aligned}
\mathbb{N}\left(x_{1}, x_{2}, \ldots, x_{N}, x_{N+1}\right)= & \left(x_{N+1},-x_{1},-x_{2}, \ldots,-x_{N}\right) \\
& -\frac{1+\gamma^{N+1}}{\sqrt{1+\gamma^{2}+\cdots+\gamma^{2 N}}} R e_{1}
\end{aligned}
$$

and $\mathbb{G}=\frac{1}{1+\gamma} \mathbb{N}+\frac{\gamma}{1+\gamma} \mathbb{I}$. That is,

$$
\mathfrak{G} x=\frac{1}{1+\gamma}\left[\begin{array}{ccccc}
\gamma & 0 & \cdots & 0 & 1 \\
-1 & \gamma & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \gamma & 0 \\
0 & 0 & \cdots & -1 & \gamma
\end{array}\right] x-\frac{1}{1+\gamma} \frac{1+\gamma^{N+1}}{\sqrt{1+\gamma^{2}+\cdots+\gamma^{2 N}}} R e_{1} .
$$

Then \mathbb{N} is nonexpansive, and \mathbb{G} is $\frac{1}{1+\gamma}$-averaged.

Outline

Exact optimal methods (upper bound) Complexity lower bound

Acceleration under Hölder-type growth condition

Experiments

Monotone \supset Uniform mon. \supset Strong mon.

(OS-PPM) provides an acceleration under monotonicity or strong monotonicity. In practice, these assumptions are often too weak or too strong, respectively. Uniform monotonicity is a practical middle ground.
$\mathbb{A}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is uniformly monotone with parameters $\mu>0$ and $\alpha>1$ if it is monotone and

$$
\left\langle\mathbb{A} x, x-x_{\star}\right\rangle \geq \mu\left\|x-x_{\star}\right\|^{\alpha+1}
$$

for any $x \in \mathbb{R}^{n}$ and $x_{\star} \in \operatorname{Zer} \mathbb{A}$. ($\alpha=\infty$ corresponds monotonicity and $\alpha=1$ to strong monotonicity.)

We also refer to this as a Hölder-type growth condition, as it resembles the Hölderian error bound condition with function-value suboptimality replaced by $\left\langle\mathbf{A} x, x-x_{\star}\right\rangle$.

PPM under uniform monotonicity

Under uniform monotonicity, we first establish the rate the unaccelerated proximal point method (PPM)

$$
x_{k+1}=\mathbf{J}_{\mathrm{A}} x_{k} .
$$

Theorem
Let $\mathbb{A}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ be uniformly monotone with parameters $\mu>0$ and $\alpha>1$. Then

$$
\left\|\tilde{\mathbf{A}} x_{N}\right\|^{2} \leq \mathcal{O}\left(\frac{1}{N^{\frac{\alpha+1}{\alpha-1}}}\right)
$$

where $\tilde{\mathbf{A}} x_{N}=x_{N-1}-x_{N}$.

Restarted OS-PPM

We accelerate the rate using (OS-PPM) and restarting ${ }^{\dagger}$. Restarted OS-PPM:

$$
\begin{align*}
& \tilde{x}_{0}=\mathbf{J}_{\mathrm{A}} x_{0} \tag{0}\\
& \tilde{x}_{k} \leftarrow \mathbf{O S}-\mathbf{P P M}_{0}\left(\tilde{x}_{k-1}, t_{k}\right), \quad k=1, \ldots, R,
\end{align*}
$$

where $\mathbf{O S}-\mathbf{P P M}_{0}\left(\tilde{x}_{k-1}, t_{k}\right)$ is the execution of t_{k} iterations of (OS-PPM) with $\mu=0$ starting from \tilde{x}_{k-1}.

Theorem

Let $\mathbb{A}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ be uniformly monotone with parameters $\mu>0$ and $\alpha>1$. There is a restarting schedule t_{1}, \ldots, t_{R} such that

$$
\left\|\tilde{\mathrm{A}} x_{N}\right\|^{2} \leq \mathcal{O}\left(\frac{1}{N^{\frac{2 \alpha}{\alpha-1}}}\right)=\mathcal{O}\left(\frac{1}{N^{\frac{\alpha+1}{\alpha-1}+1}}\right) .
$$

[^1]
Outline

```
Exact optimal methods (upper bound)
Complexity lower bound
```


Acceleration under Hölder-type growth condition

Experiments

Illustrative 2D toy examples

Toy examplex provide insight into acceleration mechanism.
$\frac{1}{\gamma}$-contractive $\mathbb{T}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and a maximal μ-strongly monotone $\mathbb{M}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& \mathbb{T}_{\theta}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{\gamma}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \mathbf{M}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left(\frac{1}{N-1}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]+\left[\begin{array}{ll}
\mu & 0 \\
0 & \mu
\end{array}\right]\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
\end{aligned}
$$

with $\gamma=1 / 0.95=1.0526, \mu=0.035$, and $\theta=15^{\circ}$.

Illustrative 2D toy examples

(a) Fixed-point residual of \mathbb{T}_{θ}

(c) Trajectory of \mathbb{T}_{θ}

(b) Resolvent residual norm of \mathbb{M}

(d) Trajectory of \mathbb{M}

Real-world problems

Experiment on several real world problems.

$$
\begin{array}{rlr}
\text { (a) } \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & \frac{1}{2}\|E x-b\|^{2}+\lambda\|D x\|_{1}, & \text { (b) } \underset{m_{x}, m_{y}}{\operatorname{minimize}^{2}} \\
\text { subject to } & \|\mathbf{m}\|_{1,1}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|m_{x, i j}\right|+\left|m_{y, i j}\right| \\
& \operatorname{div}(\mathbf{m})+\rho_{1}-\rho_{0}=0, \\
\text { (c) } \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & \frac{1}{n} \sum_{i=1}^{n}\left\|A_{(i)} x-b_{(i)}\right\|^{2}+\lambda\|x\|_{1} .
\end{array}
$$

(a) CT imaging

(b) Earth mover's distance
(c) Decentralized compressed sensing

In all three applications, restarting provides an acceleration.

Conclusion

(i) Classical fixed-point iteration is suboptimal.
(ii) Appropriate use of anchoring yields acceleration and is exactly optimial.
(iii) With restarting, we demonstrate a practical benefit in a wide range of setups.

[^0]: ${ }^{1}$ Department of Mathematical Sciences, Seoul National University

[^1]: ${ }^{\dagger}$ Nesterov, Gradient methods for minimizing composite functions, MPA, 2013
 ${ }^{\dagger}$ Roulet and d'Aspremont, Sharpness, restart, and acceleration, SIOpt, 2020.

