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Fixed-point iteration

Fixed-point iteration with 𝕋 : Rn → Rn computes

xk+1 = 𝕋xk

with some starting point x0 ∈ Rn.

Rubric: Formulate solution as fixed point of an operator and perform the
fixed-point iteration.

Ubiquitous throughout applied mathematics, science, engineering, and
machine learning. However, the computational complexity of the abstract
fixed-point iteration has not been studied extensively.

Question) What is the optimal (accelerated) iteration complexity
of fixed-point iterations?
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Fixed-point problem ⇔ Monotone inclusion problem

Our analysis relies on the following equivalence.

Fixed-point problem
find
y∈Rn

y = 𝕋y

with 1/γ-Lipschitz 𝕋 : Rn → Rn (with γ ≥ 1) is equivalent to monotone
inclusion problem

find
x∈Rn

0 ∈ 𝔸x

with maximal µ-strongly monotone 𝔸 : Rn ⇒ Rn (with µ ≥ 0).

Lemma
With γ = 1 + 2µ, there is a one-to-one correspondence

𝔸 =

(
𝕋+

1

γ
𝕀

)−1(
1 +

1

γ

)
−𝕀 ⇔ 𝕋 =

(
1 +

1

1 + 2µ

)
𝕁𝔸−

1

1 + 2µ
𝕀

and x⋆ is a zero of 𝔸 if and only if it is a fixed point of 𝕋.
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Exact optimal methods

Optimal Contractive Halpern (OC-Halpern):

yk =

(
1− 1

φk

)
𝕋yk−1 +

1

φk
y0 (OC-Halpern)

where 𝕋 is 1/γ-contractive, φk =
∑k

i=0 γ
2i, and y0 is a starting point.

Optimal Strongly-monotone Proximal Point Method (OS-PPM):

xk = 𝕁𝔸yk−1 (OS-PPM)

yk = xk +
φk−1 − 1

φk
(xk − xk−1)−

2µφk−1

φk
(yk−1 − xk) +

(1 + 2µ)φk−2

φk
(yk−2 − xk−1)

where 𝔸 is maximal µ-strongly monotone, φk =
∑k

i=0(1 + 2µ)2i,
φ−1 = 0, and x0 = y0 = y−1 is a starting point.
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Exact optimal methods

These two methods are equivalent:

yk =

(
1− 1

φk

)
𝕋yk−1 +

1

φk
y0 (OC-Halpern)

xk = 𝕁𝔸yk−1 (OS-PPM)

yk = xk +
φk−1 − 1

φk
(xk − xk−1)−

2µφk−1

φk
(yk−1 − xk) +

(1 + 2µ)φk−2

φk
(yk−2 − xk−1)

Lemma
The yk-iterates of (OC-Halpern) and (OS-PPM) are identical provided
they start from the same initial point y0.
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Accelerated rate (exact optimal)

Theorem
Let 𝔸 : Rn ⇒ Rn be maximal µ-strongly monotone with µ ≥ 0.
(OS-PPM) exhibits the rate

∥𝔸̃xN∥2 ≤

(
1∑N−1

k=0 (1 + 2µ)k

)2

∥y0 − x⋆∥2,

where 𝔸̃xN = xN−1 − xN .

This is the fastest rate. When µ = 0, the rate

∥𝔸̃xN∥2 ≤ O(1/N2)

is faster than the O(1/N) rate for (unaccelerated) PPM.

O(1/N2) rate due to (Kim 2021). Rate for µ > 0 is new.
Kim, Accelerated proximal point method for maximally monotone operators, MPA,
2021.
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Accelerated rate (exact optimal)

Corollary
Let 𝕋 : R→ R be γ−1-contractive with γ ≥ 1. (OC-Halpern) exhibits the
rate

∥yN − 𝕋yN∥2 ≤
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2.

This is the fastest rate. When γ = 1, the rate

∥yN − 𝕋yN∥2 ≤ O(1/N2)

is faster than the O(1/N) rate for plain (KM) fixed-point iteration.

O(1/N2) rate due to (Lieder 2021). Rate for γ > 1 is new.
Lieder, On the convergence rate of the Halpern-iteration. OPTL, 2021.
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Exact optimality

Theorem
For n ≥ N + 1, there exists an 1/γ-Lipschitz operator 𝕋 : Rn → Rn with
a fixed point y⋆ ∈ Fix𝕋 such that

∥yN − 𝕋yN∥2 ≥
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2

for any iterates {yk}Nk=0 satisfying

yk ∈ y0 + span{y0 − 𝕋y0, y1 − 𝕋y1, . . . , yk−1 − 𝕋yk−1}

for k = 1, . . . , N .

Lower bound matches upper bound exactly.

Θ(1/N2) lower bound for γ = 1 due to (Diakonikolas 2020), but our bound
improves the constant by a factor of about 80. Lower bound for γ > 1 is new.
Diakonikolas, Halpern iteration for near-optimal and parameter-free monotone
inclusion and strong solutions to variational inequalities, COLT, 2020.



Construction of worst-case operator

Lemma
𝕋 is 1

γ -contractive if and only if 𝔾 = γ
1+γ (𝕀− 𝕋) is 1

1+γ -averaged.

Lemma
Let R > 0. Define ℕ,𝔾 : RN+1 → RN+1 as

ℕ(x1, x2, . . . , xN , xN+1) = (xN+1,−x1,−x2, . . . ,−xN )

− 1 + γN+1√
1 + γ2 + · · ·+ γ2N

Re1

and 𝔾 = 1
1+γℕ+ γ

1+γ 𝕀. That is,

𝔾x =
1

1 + γ


γ 0 · · · 0 1
−1 γ · · · 0 0
...

...
. . .

...
...

0 0 · · · γ 0
0 0 · · · −1 γ

x− 1

1 + γ

1 + γN+1√
1 + γ2 + · · ·+ γ2N

Re1.

Then ℕ is nonexpansive, and 𝔾 is 1
1+γ -averaged.
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Monotone ⊃ Uniform mon. ⊃ Strong mon.

(OS-PPM) provides an acceleration under monotonicity or strong
monotonicity. In practice, these assumptions are often too weak or too
strong, respectively. Uniform monotonicity is a practical middle ground.

𝔸 : Rn ⇒ Rn is uniformly monotone with parameters µ > 0 and α > 1 if
it is monotone and

⟨𝔸x, x− x⋆⟩ ≥ µ∥x− x⋆∥α+1

for any x ∈ Rn and x⋆ ∈ Zer𝔸. (α =∞ corresponds monotonicity and
α = 1 to strong monotonicity.)

We also refer to this as a Hölder-type growth condition, as it resembles
the Hölderian error bound condition with function-value suboptimality
replaced by ⟨𝔸x, x− x⋆⟩.
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PPM under uniform monotonicity

Under uniform monotonicity, we first establish the rate the unaccelerated
proximal point method (PPM)

xk+1 = 𝕁𝔸xk.

Theorem
Let 𝔸 : Rn ⇒ Rn be uniformly monotone with parameters µ > 0 and
α > 1. Then

∥𝔸̃xN∥2 ≤ O
(

1

N
α+1
α−1

)
where 𝔸̃xN = xN−1 − xN .
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Restarted OS-PPM

We accelerate the rate using (OS-PPM) and restarting†. Restarted
OS-PPM:

x̃0 = 𝕁𝔸x0 (OS-PPMres
0 )

x̃k ← OS-PPM0(x̃k−1, tk), k = 1, . . . , R,

where OS-PPM0(x̃k−1, tk) is the execution of tk iterations of
(OS-PPM) with µ = 0 starting from x̃k−1.

Theorem
Let 𝔸 : Rn ⇒ Rn be uniformly monotone with parameters µ > 0 and
α > 1. There is a restarting schedule t1, . . . , tR such that

∥𝔸̃xN∥2 ≤ O
(

1

N
2α

α−1

)
= O

(
1

N
α+1
α−1+1

)
.

†Nesterov, Gradient methods for minimizing composite functions, MPA, 2013
†Roulet and d’Aspremont, Sharpness, restart, and acceleration, SIOpt, 2020.
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Illustrative 2D toy examples

Toy examplex provide insight into acceleration mechanism.

1
γ -contractive 𝕋θ : R2 → R2 and a maximal µ-strongly monotone

𝕄 : R2 → R2

𝕋θ

[
x1

x2

]
=

1

γ

[
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
𝕄

[
x1

x2

]
=

(
1

N − 1

[
0 1
−1 0

]
+

[
µ 0
0 µ

])[
x1

x2

]
.

with γ = 1/0.95 = 1.0526, µ = 0.035, and θ = 15◦.
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Illustrative 2D toy examples

100 101 102

Iteration count

10-6

10-5

10-4

10-3

10-2

10-1
‖x

k
−

T
x
k
‖2

Picard
OHM
OC-Halpern

(a) Fixed-point residual of 𝕋θ
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(b) Resolvent residual norm of 𝕄
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(c) Trajectory of 𝕋θ
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(d) Trajectory of 𝕄
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Real-world problems

Experiment on several real world problems.

(a) minimize
x∈Rn

1

2
∥Ex− b∥2 + λ∥Dx∥1,

(b) minimize
mx,my

∥m∥1,1 =
n∑

i=1

n∑
j=1

|mx,ij |+ |my,ij |

subject to div(m) + ρ1 − ρ0 = 0,

(c) minimize
x∈Rn

1

n

n∑
i=1

∥A(i)x− b(i)∥2 + λ∥x∥1.
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(a) CT imaging
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(b) Earth mover’s distance
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(c) Decentralized com-
pressed sensing

In all three applications, restarting provides an acceleration.



Conclusion

(i) Classical fixed-point iteration is suboptimal.

(ii) Appropriate use of anchoring yields acceleration and is exactly
optimial.

(iii) With restarting, we demonstrate a practical benefit in a wide range
of setups.
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