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Fixed-point iteration

Fixed-point iteration with T: R™ — R"™ computes
Tpy1 = Ty

with some starting point zg € R™.

Rubric: Formulate solution as fixed point of an operator and perform the
fixed-point iteration.

Ubiquitous throughout applied mathematics, science, engineering, and
machine learning. However, the computational complexity of the abstract
fixed-point iteration has not been studied extensively.

Question) What is the optimal (accelerated) iteration complexity
of fixed-point iterations?



Fixed-point problem < Monotone inclusion problem

Our analysis relies on the following equivalence.

Fixed-point problem

find =T
Jokn Y Y

with 1/~-Lipschitz T: R™ — R™ (with v > 1) is equivalent to monotone
inclusion problem

find 0¢€ Ax
zER™

with maximal p-strongly monotone A: R” = R™ (with pu > 0).

Lemma
With v =1+ 2pu, there is a one-to-one correspondence

1\! 1 1 1
A=(T+-1I 1+-)-T & T=(1+ Ja—
( 7) ( v) ( 1+2u) A T2

and x, is a zero of A if and only if it is a fixed point of T.
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Exact optimal methods

Optimal Contractive Halpern (OC-Halpern):
1 1
yp=|1— — ) Tyg—1 + —yo (OC-Halpern)
Pk Pk
where T is 1/~-contractive, o), = Y. 42, and y, is a starting point.
Optimal Strongly-monotone Proximal Point Method (OS-PPM):
T = JIAyk_1 (OS-PPM)

S 2pr 1+ 20) n—
(Pk;(xk—mk_l)_M(yk_l_xk)_FM

(Yr—2 — T—1)
Pk Ok Ok

Yk = Tk +

where A is maximal p-strongly monotone, ¢y, = SOF_ (1 + 2)%,
p_1 =0, and xp = yp = y_1 is a starting point.
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Exact optimal methods

These two methods are equivalent:

1 1
Yk = (1 - ) Tyr—1+ —o (OC-Halpern)
Pk Pk
T = Jayr—1 (OS-PPM)
1—1 2 _ 1+2 _
Yk = Tk + “pk;(xk — Zp1) — &(yk_l —z) + M(yk—z A
Pk Pk Yk
Lemma

The yy.-iterates of (OC-Halpern) and (OS-PPM) are identical provided
they start from the same initial point yg.
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Accelerated rate (exact optimal)

Theorem

Let A: R™ = R™ be maximal u-strongly monotone with p > 0.
(OS-PPM) exhibits the rate

2
~ 1
2 e - _ 2
||A-'I/'N|| _< g_01(1+2ﬂ)k> ||y0 x*”v

where [\xN =IN_1— IN.
This is the fastest rate. When p = 0, the rate

IAzy[* < O(1/N?)
is faster than the O(1/N) rate for (unaccelerated) PPM.

O(1/N?) rate due to (Kim 2021). Rate for u > 0 is new.
Kim, Accelerated proximal point method for maximally monotone operators, MPA,
2021.
Exact optimal methods (upper bound)



Accelerated rate (exact optimal)

Corollary
Let T: R — R be v~ !-contractive with v > 1. (OC-Halpern) exhibits the

rate
9 2
lyx — Ty |2<(1+1) ( ! ) —
N — Tyn||” < - - 0 — Ysll”
v Yoo F

This is the fastest rate. When v = 1, the rate
lyn — Tyn|* < O(1/N?)

is faster than the O(1/N) rate for plain (KM) fixed-point iteration.

O(1/N?) rate due to (Lieder 2021). Rate for v > 1 is new.
Lieder, On the convergence rate of the Halpern-iteration. OPTL, 2021.
Exact optimal methods (upper bound)



Outline

Complexity lower bound

Complexity lower bound



Exact optimality

Theorem
Forn > N + 1, there exists an 1/~-Lipschitz operator T: R™ — R"™ with
a fixed point y, € FixT such that

9 2
o =Tl > (14 2) () oo = 0el?
- N *
v > k07"
for any iterates {yi }1_, satisfying

Yk € yo + span{yo — Tyo,y1 — Ty1, ..., ye—1 — Typ—1}

fork=1,...,N.

Lower bound matches upper bound exactly.

©(1/N?) lower bound for v = 1 due to (Diakonikolas 2020), but our bound
improves the constant by a factor of about 80. Lower bound for v > 1 is new.
Diakonikolas, Halpern iteration for near-optimal and parameter-free monotone
inclusion and strong solutions to variational inequalities, COLT, 2020.



Construction of worst-case operator

Lemma
T is %—contractive if and only if G = 1+,y (I-T)is 1+ -averaged.
Lemma
Let R > 0. Define N,G: RN*+1 — RN+ 55
N(z1,22,..., 2N, ZN41) = (TN41, —T1, —T2, ..., —TN)
1 +,7N+1

R€1

and G = N+ 1. That is,

14~ 14
vy 0 -~ 0 1
-1 ... 0 0
1 v 1 1+,YN+1
Gr=qo—|: ¢ T —Re,.
v 0 0 - ~ 0 +v -ty
o 0 -+ =1 v

Then N is nonexpansive, and G is ﬁ—averaged.
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Monotone O Uniform mon. O Strong mon.

(OS-PPM) provides an acceleration under monotonicity or strong
monotonicity. In practice, these assumptions are often too weak or too
strong, respectively. Uniform monotonicity is a practical middle ground.

A: R™ = R"™ is uniformly monotone with parameters 1 > 0 and o > 1 if
it is monotone and

(Az,z —a.) > pllo — 2.

for any € R™ and z, € Zer A. (o = oo corresponds monotonicity and
a =1 to strong monotonicity.)

We also refer to this as a Holder-type growth condition, as it resembles
the Holderian error bound condition with function-value suboptimality
replaced by (Ax,x — x,).

Acceleration under Holder-type growth condition
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PPM under uniform monotonicity

Under uniform monotonicity, we first establish the rate the unaccelerated
proximal point method (PPM)

Tk+1 = JIAxk.

Theorem
Let A: R™ = R"™ be uniformly monotone with parameters ;1 > 0 and
a>1. Then

~ 1
lAay|? <0 ()
No—1

where Axny = xn_1 — TN

Acceleration under Holder-type growth condition
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Restarted OS-PPM

We accelerate the rate using (OS-PPM) and restartingt. Restarted
OS-PPM:

530 = .UA.TQ (OS—PPMBES)

Tk (—OS—PPMo(,fkfl,tk), k=1,...,R,

where OS-PPM(Z;_1,11) is the execution of ¢y iterations of
(OS-PPM) with g = 0 starting from Zj_;.

Theorem
Let A: R™ = R"™ be uniformly monotone with parameters ;1 > 0 and
« > 1. There is a restarting schedule t1, ... ,tr such that

. 1 1
2 —
[Aanl =0 (Nf“l ) —¢ (N?Hl) '

TNesterov, Gradient methods for minimizing composite functions, MPA, 2013
tRoulet and d’Aspremont, Sharpness, restart, and acceleration, SIOpt, 2020.
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lllustrative 2D toy examples

Toy examplex provide insight into acceleration mechanism.

%—contractive Te: R? — R? and a maximal u-strongly monotone

M: R%2 - R?
T, |1 _ 1 jcos® —sind| |z;
O las| — v |sinf  cos@ | |xo
I _ 1 0 1 1% 0 T
wlz) = (e[ of + 6 D)

with y = 1/0.95 = 1.0526, ;1 = 0.035, and 6 = 15°.
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Real-world problems

Experiment on several real world problems.

(a) minimize
TER™

1
SlHEz — bl|* + AllDzll1,

subject to

n n
(b) minimize Il =" Ima,is] + [my,i]

i=1j=1

div(m) + p1 — po = 0,

A
(€) minisgize 2> 4wz = bol* + Azl
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In all three applications, restarting provides an acceleration.



Conclusion

(i) Classical fixed-point iteration is suboptimal.

(ii) Appropriate use of anchoring yields acceleration and is exactly
optimial.

(iii) With restarting, we demonstrate a practical benefit in a wide range
of setups.
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