Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression

Jingfeng Wu
with Difan Zou, Vladimir Braverman, Quanquan Gu, Sham M. Kakade

The Implicit Regularization Effect of SGD

n training samples

$$
\pi\left(\mathbf{x}_{1}, y_{1}\right) \cdots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{d \times 1}
$$

Population Risk

$\mathscr{L}(\mathbf{w})=\mathbb{E} \ell(\mathbf{x}, y ; \mathbf{w})$

$$
\operatorname{SGD} \mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \nabla \ell\left(\mathbf{x}_{i}, y_{i} ; \mathbf{w}\right)
$$

SGD generalizes well for learning high-dim model
$\mathbf{w} \in \mathbb{R}^{d}$ for large d

High Dimensional Linear Regression

True Model $\quad y=\mathbf{x}^{\top} \mathbf{w}^{*}+\mathscr{N}\left(0, \sigma^{2}\right)$
Data Covariance $\mathbf{H}:=\mathbb{E}\left[\mathbf{x x}^{\top}\right]=$: $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, WOLG
Population Risk $\mathscr{L}(\mathbf{w}):=\mathbb{E}\left(y-\mathbf{x}^{\top} \mathbf{w}\right)^{2}$
Excess Risk $\quad \Delta(\mathbf{w}):=\mathscr{L}(\mathbf{w})-\mathscr{L}\left(\mathbf{w}^{*}\right)=\left(\mathbf{w}-\mathbf{w}^{*}\right)^{\top} \mathbf{H}\left(\mathbf{w}-\mathbf{w}^{*}\right)$
SGD with n samples, $\left(\mathbf{x}_{1}, y_{1}\right) \cdots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{d \times 1}$

$$
\begin{gathered}
\mathbf{w}_{t}=\mathbf{w}_{t-1}+\eta_{t} \cdot\left(y_{t}-\mathbf{x}_{t}^{\top} \mathbf{w}_{t-1}\right) \cdot \mathbf{x}_{t} \\
\text { output }:=\mathbf{w}_{n}
\end{gathered}
$$

Caveat: One-Pass SGD Two regimes: $d \lessgtr n$?

Key Assumption: Strongly Contractive Fourth Moment

> Recall that $\mathbf{H}=\mathbb{E}\left[\mathbf{x x}^{\top}\right]$. Assume that for every PSD matrix A , $\cdot \mathbb{E}\left[\mathbf{x}^{\top} \mathrm{A} \mathbf{x} \cdot \mathbf{x x}^{\top}\right] \leq \alpha \cdot \operatorname{tr}(\mathbf{H} \mathrm{A}) \cdot \mathbf{H}$ for some constant $\alpha \geq 1 ;$ $\cdot \mathbb{E}\left[\mathbf{x}^{\top} \mathrm{A} \mathbf{x} \cdot \mathbf{x x}^{\top}\right] \succeq \beta \cdot \operatorname{tr}(\mathbf{H A}) \cdot \mathbf{H}+\mathbf{H} A \mathbf{H}$ for some constant $\beta>0$.

Tail Geometrically Decaying Stepsizes

$$
\begin{gathered}
\mathbf{w}_{t}=\mathbf{w}_{t-1}+\eta_{t} \cdot\left(y_{t}-\mathbf{x}_{t}^{\top} \mathbf{w}_{t-1}\right) \cdot \mathbf{x}_{t} \quad \text { output }:=\mathbf{w}_{n} \\
\eta_{t}=\left\{\begin{array}{ll}
\eta_{0}, & t \leq s \\
0.5 \eta_{t-1}, & t>s, t \% K=0 \\
\eta_{t-1}, & \text { otherwise }
\end{array} \left\lvert\, \begin{array}{ll}
{[\mathrm{GKKN} 2019]} \\
\mathbb{E} \Delta\left(\mathbf{w}_{n}\right) \lesssim\left(\frac{d\left\|\mathbf{w}_{0}-\mathbf{w}^{*}\right\|_{2}^{2}}{\eta_{0} n}+\frac{d}{n} \cdot \sigma^{2}\right) \cdot \log n \\
\text { Remarks } \\
\text { 1. Weakly contractive fourth moment } \\
\text { 2. Variance bound scales with } d \\
\text { 3. } \ell_{2} \text {-norm or condition number implicitly depends on } d
\end{array}\right.\right. \\
\text { Useful in practice! }
\end{gathered}
$$

A Fine-Grained Upper Bound

Let the stepsize decaying interval be $K:=(n-s) / \log (n-s)$. For every $s>0, K>2$ and every $\eta_{0}<1 /(4 \alpha \operatorname{tr}(\mathbf{H}) n)$, we have
exponentially decaying
$\mathbb{E} \Delta\left(\mathbf{w}_{n}\right) \lesssim \frac{\left\|\left(\mathbf{I}-\eta_{0} \mathbf{H}\right)^{s+K}\left(\mathbf{w}_{0}-\mathbf{w}^{*}\right)\right\|_{\mathbf{I}_{0: k^{*}}}^{2}}{\gamma_{0} K}+\left\|\left(\mathbf{I}-\eta_{0} \mathbf{H}\right)^{s+K}\left(\mathbf{w}_{0}-\mathbf{w}^{*}\right)\right\|_{\mathbf{H}_{k^{*}: \infty}}^{2}$

$$
+\frac{k^{*}+\eta_{0} K^{2} \sum_{k^{*}<i \leq k^{\dagger}} \lambda_{i}+\eta_{0}^{2} K^{2} \sum_{i>k^{\dagger}} \lambda_{i}^{2}}{K} \cdot\left(\sigma^{2}+\alpha \cdot\left\|\mathbf{w}_{0}-\mathbf{w}^{*}\right\|_{\mathbf{H}}^{2} \cdot \log (n)\right)
$$

Here k^{*}, k^{\dagger} are such that $\lambda_{1} \geq \ldots \geq \lambda_{k^{*}} \geq \frac{1}{\eta_{0} K} \geq \lambda_{k^{*}+1} \geq \ldots \geq \lambda_{k^{\dagger}} \geq \frac{1}{\eta_{0}(s+K)} \geq \lambda_{k^{\dagger}+1} \geq \ldots$
Ambient Dimension d vs. $\quad \mathbf{I}_{0: k^{*}}:=\operatorname{diag}(1, \ldots, 1,0,0, \ldots) \quad \mathbf{H}_{k^{*}, \infty}:=\operatorname{diag}\left(0, \ldots, 0, \lambda_{k^{*}+1}, \lambda_{k^{*}+2}, \ldots\right)$
Effective Dimension $k^{*}+\eta_{0} K^{2} \sum_{k^{*}<i \leq k^{\dagger}} \lambda_{i}+\eta_{0}^{2} K^{2} \sum_{i>k^{\dagger}} \lambda_{i}^{2}$, small when $\left(\lambda_{i}\right)_{i \geq 1}$ decays fast

A Nearly Matching Lower Bound

Let the stepsize decaying interval be $K:=(n-s) / \log (n-s)$. For every $s \geq 0, K>10$ and every $\eta_{0}<1 / \lambda_{1}$, we have
$\mathbb{E} \Delta\left(\mathbf{w}_{n}\right) \gtrsim\left\|\left(\mathbf{I}-\eta_{0} \mathbf{H}\right)^{s+2 K}\left(\mathbf{W}_{0}-\mathbf{W}^{*}\right)\right\|_{\mathbf{H}^{+}}^{2}+$

$$
\frac{k^{*}+\eta_{0} K \sum_{k^{*}<i \leq k^{\dagger}} \lambda_{i}^{2}+\eta_{0}^{2} K^{2} \sum_{i>k^{*}} \lambda_{i}^{2}}{K} \cdot\left(\sigma^{2}+\beta \cdot\left\|\mathbf{w}_{0}-\mathbf{w}^{*}\right\|_{\mathbf{H}_{k^{*}, \infty}}^{2}\right)
$$

Here k^{*}, k^{\dagger} are such that $\lambda_{1} \geq \ldots \geq \lambda_{k^{*}} \geq \frac{1}{\eta_{0} K} \geq \lambda_{k^{*}+1} \geq \ldots \geq \lambda_{k^{\dagger}} \geq \frac{1}{\eta_{0}(s+K)} \geq \lambda_{k^{\dagger}+1} \geq \ldots$
Lower bound nearly matches upper bound if SNR is bounded, $\left\|\mathbf{w}_{0}-\mathbf{w}^{*}\right\|_{\mathbf{H}}^{2} \lesssim \sigma^{2}$

$$
\begin{aligned}
& \mathbf{I}_{0: k^{*}}:=\operatorname{diag}(1, \ldots, 1,0,0, \ldots) \\
& \mathbf{H}_{k^{*}: \infty}:=\operatorname{diag}\left(0, \ldots, 0, \lambda_{k^{*}+1}, \lambda_{k^{*}+2}, \ldots\right)
\end{aligned}
$$

Geometrically vs. Polynomially Decaying Stepsize

$\eta_{t}= \begin{cases}\eta_{0}, & t \leq s \\ 0.5 \eta_{t-1}, & t>s, t \% K=0 \\ \eta_{t-1}, & \text { otherwise }\end{cases}$

$$
\eta_{t}=\left\{\begin{array}{ll}
\eta_{0}, & t \leq s \\
\frac{\eta_{0}}{(t-s)^{a}}, & t>s
\end{array} \text { for } 0 \leq a \leq 1\right.
$$

Let $w_{n}^{\text {exp }}$ and $w_{n}^{p o l y}$ be the SGD outputs with geometrically and polynomially decaying stepsizes, respectively. Fix same $s=n / 2$, same \mathbf{w}_{0}, same η_{0}. Then we have

$$
\mathbb{E} \Delta\left(\mathbf{w}_{\mathbf{n}}^{\exp }\right) \lesssim(1+\operatorname{SNR} \cdot \log n) \cdot \mathbb{E} \Delta\left(\mathbf{w}_{\mathbf{n}}^{\mathrm{poly}}\right)
$$

where SNR :=\| $\mathbf{w}_{0}-\mathbf{w}_{n} \|_{\mathbf{H}}^{2} / \sigma^{2}$.
For every least square problem with bounded SNR, $\mathbf{w}_{n}^{\text {exp }}$ is always nearly no worse than $\mathbf{w}_{n}^{\text {poly }}$

Numerical Simulation

Experimental Setting: $\sigma^{2}=1, d=256, \mathbf{w}_{0}=0, s=n / 2, a=1$
Under each sample size, the initial stepsize is fine-tuned for each algorithm

- SGD can generalize in high-dim least squares
- Geometrically decaying stepsizes > polynomially decaying stepsizes

Conclusion

Take Home

Limitations

- One-pass SGD
- Linear model
- Strongly contractive fourth moment
- Geometrical stepsize > polynomially stepsize

Get the Paper!

