
Last Iterate Risk Bounds of  
SGD with Decaying Stepsize for  

Overparameterized Linear Regression
Jingfeng Wu


with Difan Zou, Vladimir Braverman, Quanquan Gu, Sham M. Kakade



SGD generalizes well

The Implicit Regularization Effect of SGD

Population Risk 

ℒ(w) = 𝔼ℓ(x, y; w)

 training samples




n
(x1, y1)⋯, (xn, yn) ∈ ℝd×1

SGD w ← w − η ⋅ ∇ℓ(xi, yi; w)

Large Model 
 for large w ∈ ℝd d

Wilson, Ashia C., Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. "The marginal value of adaptive gradient 
methods in machine learning." Advances in neural information processing systems 30 (2017).

SGD generalizes well for  
learning high-dim model



High Dimensional Linear Regression

SGD with  samples, 







n (x1, y1)⋯, (xn, yn) ∈ ℝd×1

wt = wt−1 + ηt ⋅ (yt − x⊤
t wt−1) ⋅ xt

output := wn

Two regimes: ?d ≶ nCaveat: One-Pass SGD 0 1000 2000 3000 4000
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True Model            


Data Covariance  ,   WOLG


Population Risk      


Excess Risk          

y = x⊤w* + 𝒩(0,σ2)
H := 𝔼[xx⊤] =: 𝚍𝚒𝚊𝚐(λ1, λ2, …)
ℒ(w) := 𝔼(y − x⊤w)2

Δ(w) := ℒ(w) − ℒ(w*) = (w − w*)⊤H(w − w*)



Key Assumption: Strongly Contractive Fourth Moment
Recall that . Assume that for every PSD matrix ,

•  for some constant ;

•  for some constant .

H = 𝔼[xx⊤] A
𝔼[x⊤Ax ⋅ xx⊤] ⪯ α ⋅ tr(HA) ⋅ H α ≥ 1
𝔼[x⊤Ax ⋅ xx⊤] ⪰ β ⋅ tr(HA) ⋅ H + HAH β > 0

Weakly contractive fourth moment

𝔼[xx⊤xx⊤] ⪯ R2 ⋅ H

Strongly contractive  
fourth moment

Bounded kurtosis

∀v, 𝔼⟨v, x⟩4 ≤ α⟨v, Hv⟩2

Spherically symmetric distributions,

sub-Gaussian, sub-Exponential…

• Bach, Francis, and Eric Moulines. "Non-strongly-convex smooth stochastic approximation with convergence rate O (1/n)." Advances in neural information processing systems 26 (2013). 
• Bartlett, Peter L., Philip M. Long, Gábor Lugosi, and Alexander Tsigler. "Benign overfitting in linear regression." Proceedings of the National Academy of Sciences 117, no. 48 (2020): 30063-30070.

e.g., [BM 2013]e.g., [BLLT 2020]

we are here One-hot distributions

(which are easy to analyze)



Tail Geometrically Decaying Stepsizes
              wt = wt−1 + ηt ⋅ (yt − x⊤

t wt−1) ⋅ xt output := wn

[GKKN 2019]





Remarks

1. Weakly contractive fourth moment

2. Variance bound scales with 

3. -norm or condition number implicitly depends on 

𝔼Δ(wn) ≲ ( d∥w0 − w*∥2
2

η0n
+

d
n

⋅ σ2) ⋅ log n

d
ℓ2 d

what if  ?d > n

Ge, Rong, Sham M. Kakade, Rahul Kidambi, and Praneeth Netrapalli. "The step decay schedule: A near optimal, geometrically decaying learning rate procedure for least squares." Advances 
in Neural Information Processing Systems 32 (2019).

ηt =
η0, t ≤ s
0.5ηt−1, t > s, t % K = 0
ηt−1, otherwise

Useful in practice!



Let the stepsize decaying interval be . For every ,  and every
, we have





Here  are such that  

K := (n − s)/log(n − s) s > 0 K > 2
η0 < 1/(4αtr(H)n)

𝔼Δ(wn) ≲
∥(I − η0H)s+K(w0 − w*)∥2

I0:k*

γ0K
+ ∥(I − η0H)s+K(w0 − w*)∥2

Hk*:∞

+
k* + η0K2 ∑k*<i≤k† λi + η2

0K2 ∑i>k† λ2
i

K
⋅ (σ2 + α ⋅ ∥w0 − w*∥2

H ⋅ log(n))

k*, k† λ1 ≥ … ≥ λk* ≥
1

η0K
≥ λk*+1 ≥ … ≥ λk† ≥

1
η0(s + K)

≥ λk†+1 ≥ …

A Fine-Grained Upper Bound

exponentially decaying

effective dimension

    I0:k* := diag(1,…,1,0,0,…) Hk*:∞ := diag(0,…,0,λk*+1, λk*+2, …)Ambient Dimension  vs.  
Effective Dimension , small when  decays fast

d
k* + η0K2 ∑

k*<i≤k†

λi + η2
0K2 ∑

i>k†

λ2
i (λi)i≥1



Lower bound nearly matches upper bound  
if SNR is bounded, ∥w0 − w*∥2

H ≲ σ2

Let the stepsize decaying interval be . For every ,  and every 
, we have





Here  are such that  

K := (n − s)/log(n − s) s ≥ 0 K > 10
η0 < 1/λ1

𝔼Δ(wn) ≳ ∥(I − η0H)s+2K(w0 − w*)∥2
H+

k* + η0K∑k*<i≤k† λ2
i + η2

0K2 ∑i>k* λ2
i

K
⋅ (σ2 + β ⋅ ∥w0 − w*∥2

Hk*:∞)
k*, k† λ1 ≥ … ≥ λk* ≥

1
η0K

≥ λk*+1 ≥ … ≥ λk† ≥
1

η0(s + K)
≥ λk†+1 ≥ …

A Nearly Matching Lower Bound

effective dimension


I0:k* := diag(1,…,1,0,0,…)
Hk*:∞ := diag(0,…,0,λk*+1, λk*+2, …)



Geometrically vs. Polynomially Decaying Stepsize

Let  and  be the SGD outputs with geometrically and polynomially decaying stepsizes, 
respectively. Fix same , same , same . Then we have




where .

w𝚎𝚡𝚙
n w𝚙𝚘𝚕𝚢

n
s = n/2 w0 η0

𝔼Δ(w𝚎𝚡𝚙
n ) ≲ (1 + 𝚂𝙽𝚁 ⋅ log n) ⋅ 𝔼Δ(w𝚙𝚘𝚕𝚢

n )
𝚂𝙽𝚁 := ∥w0 − wn∥2

H / σ2

ηt =
η0, t ≤ s
0.5ηt−1, t > s, t % K = 0
ηt−1, otherwise

   for ηt = {
η0, t ≤ s

η0

(t − s)a , t > s 0 ≤ a ≤ 1

For every least square problem with bounded SNR,  
 is always nearly no worse than w𝚎𝚡𝚙

n w𝚙𝚘𝚕𝚢
n



Numerical Simulation

Experimental Setting: , , , ,  
Under each sample size, the initial stepsize is fine-tuned for each algorithm

σ2 = 1 d = 256 w0 = 0 s = n/2 a = 1

• SGD can generalize in high-dim least squares

• Geometrically decaying stepsizes > polynomially decaying stepsizes

λi = i−1, w*[i] = i−1 λi = i−2, w*[i] = i−1



Conclusion

Vladimir Bravermen @ JHU Quanquan Gu @ UCLA Difan Zou @ UCLASham M. Kakade @ 
Harvard

Take Home 

• Risk of SGD in high-dim  

•  determined by , , ; and  when  
decay fast 

• Geometrical stepsize > polynomially stepsize

≈ d𝚎𝚏𝚏 / n𝚎𝚏𝚏

d𝚎𝚏𝚏 (λi)i≥1 η0 n𝚎𝚏𝚏 ≪ d (λi)i≥1

Limitations 

• One-pass SGD 

• Linear model 

• Strongly contractive 
fourth moment

Get the Paper!


