Partial Counterfactual Identification from Observational and Experimental Data

Junzhe Zhang¹, Jin Tian², Elias Bareinboim¹ ¹Columbia University ²Iowa State University

Thirty-ninth International Conference on Machine Learning, 2022

The Partial Identification Problem

Partial Identification of Causal Effects

Task. Given the observational distribution $P(\mathbf{v})$ in an arbitrary causal diagram *G*, bound $P(\mathbf{y} | do(\mathbf{x}))$ for any $\mathbf{X}, \mathbf{Y} \subseteq \mathbf{V}$.

- We assume that the domain of V is discrete and finite.
- Let \mathcal{M} denote the set of all possible SCMs compatible with G.
- Given $P(\mathbf{v})$, $P(\mathbf{y} | do(\mathbf{x}))$ is bounded in [a, b] where:

 $a = \min P_M(\mathbf{y} | do(\mathbf{x})), \qquad \forall M \in \mathcal{M},$ $b = \max P_M(\mathbf{y} | do(\mathbf{x})). \qquad \text{s.t.} \qquad \forall M \in \mathcal{M},$ $P_M(\mathbf{v}) = P(\mathbf{v}).$

Solving this optimization is difficult since parametric form of $\mathcal{F}, P(U)$ are not provided.

X

Canonical Causal Models

Definition. A canonical SCM is a SCM $M = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{U}) \rangle$ where

- Every $V \in \mathbf{V}$ is decided by a function $v \leftarrow f_V(\text{pa}_V, u_V)$ taking values in a discrete and finite domain Ω_V .
- Every $U \in \mathbf{U}$ are drawn from a discrete domain Ω_U with cardinality

$$\Omega_U = \prod_{V \in \mathbf{C}(U)} |\Omega_{\mathbf{Pa}_V}| \times |\Omega_V|$$

where C(U) is the c-component in G that covers U.

Two endogenous variables are in the same c-component if and only if they are connected by a bi-directed path.

Canonical SCMs

Theorem. For any SCM *M*, there exists a canonical SCM *N* s.t.

- 1. *M* and *N* are compatible with the same causal diagram G;
- 2. For any subsets $\mathbf{X}, \mathbf{Y} \subseteq \mathbf{V}, P_M(\mathbf{y} | do(\mathbf{x})) = P_N(\mathbf{y} | do(\mathbf{x})).$

Partial Identification of Causal Effects: Revisit

Task. Given the observational distribution $P(\mathbf{v})$ in an arbitrary causal diagram *G*, bound $P(\mathbf{y} | do(\mathbf{x}))$ for any $\mathbf{X}, \mathbf{Y} \subseteq \mathbf{V}$.

- We assume that the domain of V is discrete and finite.
- Let \mathcal{N} denote the set of all canonical SCMs compatible with G.
- Given $P(\mathbf{v})$, $P(\mathbf{y} | do(\mathbf{x}))$ is bounded in [a, b] where:

 $a = \min P_N(\mathbf{y} | do(\mathbf{x})), \qquad \forall N \in \mathcal{N},$ $b = \max P_N(\mathbf{y} | do(\mathbf{x})). \qquad \text{s.t.} \qquad P_N(\mathbf{v}) = P(\mathbf{v}).$

This problem is reducible to an equivalent polynomial optimization program

X

Example: Non-IV

N = 1000

Conclusions

- We introduce canonical causal models that could represent all interventional distributions in an arbitrary causal diagram.
- It reduces partial causal identification to equivalent polynomial programs.
- What is in the paper (Contributions):
 - Generalized canonical SCMs that could represent all counterfactual distributions in a causal digram.
 - Effective posterior sampling methods to approximate optimal bounds over unknown counterfactual probabilities from observational and experimental data.