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The Partial Identification Problem
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Partial Identification of Causal
Effects

Task. Given the observational distribution P(v)in  “.. %
an arbitrary causal diagram G, bound P(y |do(x)) wooN
forany X, Y C V. . >

V4 X

e \We assume that the domain of V is discrete and finite.

e Let denote the set of all possible SCMs compatible with G.
e Given P(v), P(y|do(x)) is bounded in |a, b| where:

a = min Py,(y | do(x)), VM e .,
s.t

b = max P,(y | do(x)). "~ Py(v) =P(v).



Canonical Causal Models

Definition. A canonical SCM isa SCM M = (V,U, %, P(U)) where

o Every V € Vis decided by a function v « f,(pa,, uy) taking values
in a discrete and finite domain €2y,

e Every U € U are drawn from a discrete domain £2;; with cardinality

Q)= ] 19p,,l %I
VeCU)

where C(U) is the c-component in G that covers U.

Two endogenous variables are in the same c-component
If and only if they are connected by a bi-directed path.



Canonical SCMs

Theorem. For any SCM M, there exists a canonical SCM N s.t.
1. M and N are compatible with the same causal diagram G;

2. Forany subsets X, Y CV, Py (y|do(x)) = Py(y|do(x)).
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Partial Identification of Causal
Effects: Revisit

Task. Given the observational distribution P(v)in  “.. %
an arbitrary causal diagram G, bound P(y |do(x))
forany X, Y C V. . >

V4 X

e \We assume that the domain of V is discrete and finite.

e Let ./ denote the set of all canonical SCMs compatible with G.

o Given P(v), P(y|do(x)) is bounded in |a, b| where:

a = min Py(y | do(x)), : VN e /I,
S.1.

b = max Py(y | do(X)) . Py(v) = P(v).

This problem is reducible to an equivalent polynomial
optimization program



Example: Non-IV
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Conclusions

 We introduce canonical causal models that could represent all
interventional distributions in an arbitrary causal diagram.

* |t reduces partial causal identification to equivalent polynomial
programs.

e What is in the paper (Contributions):

 Generalized canonical SCMs that could represent all
counterfactual distributions in a causal digram.

o Effective posterior sampling methods to approximate
optimal bounds over unknown counterfactual probabillities
from observational and experimental data.



