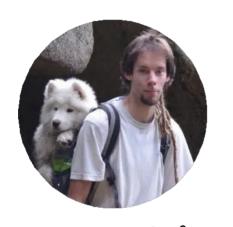
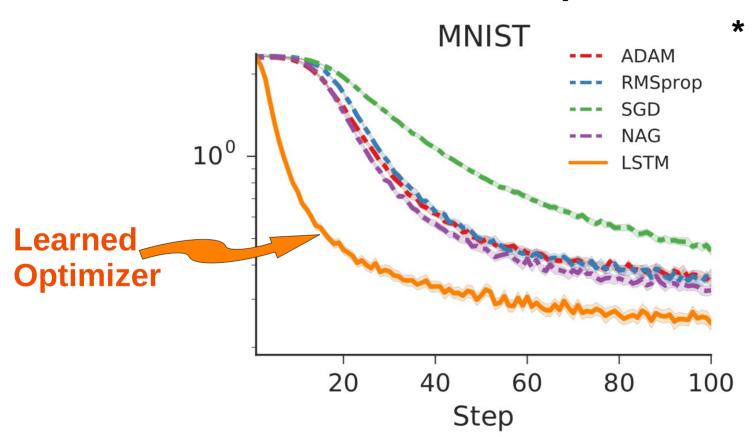
A Simple Guard for Learned Optimizers



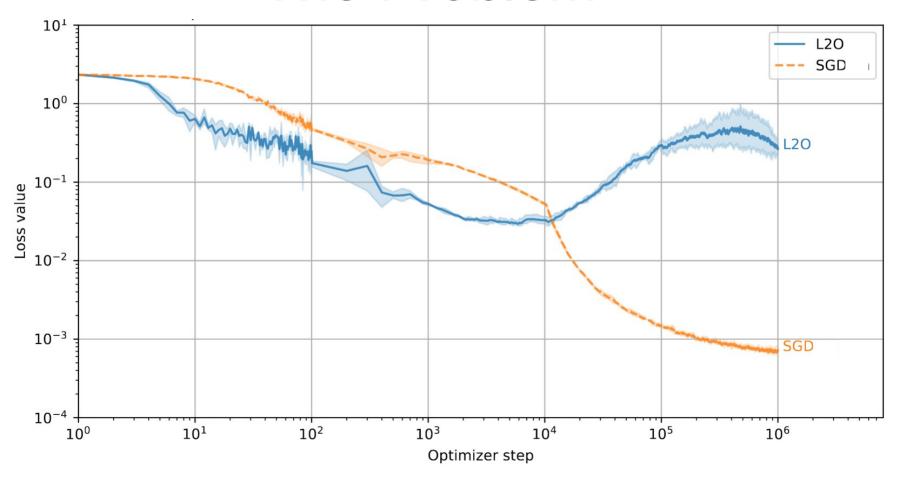
Jaroslav Vítků, Isabeau Prémont-Schwarz, Jan Feyereisl

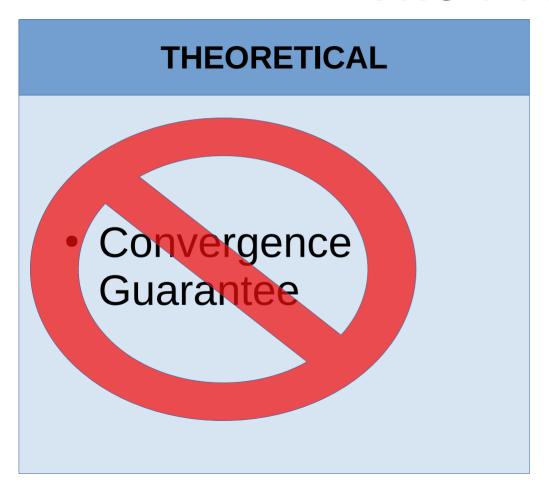
The Hope

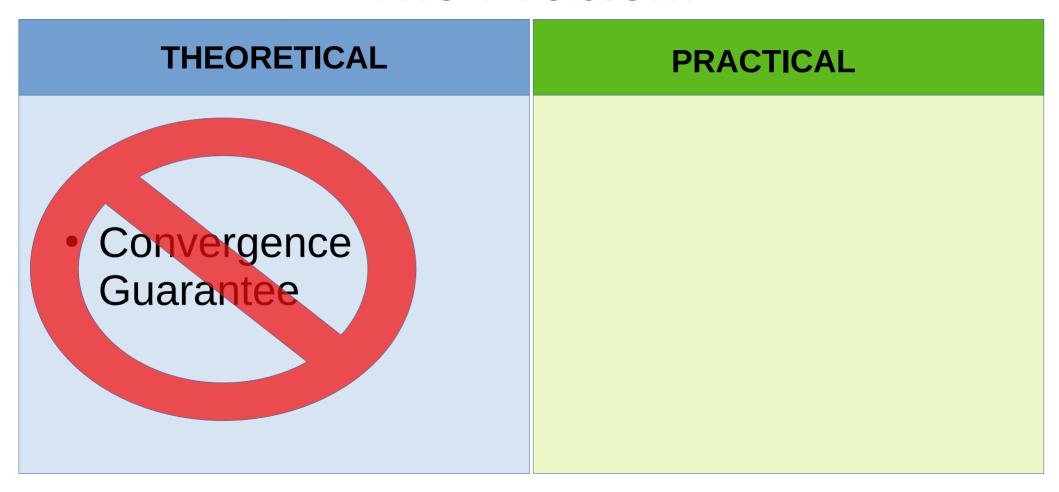
The Hope

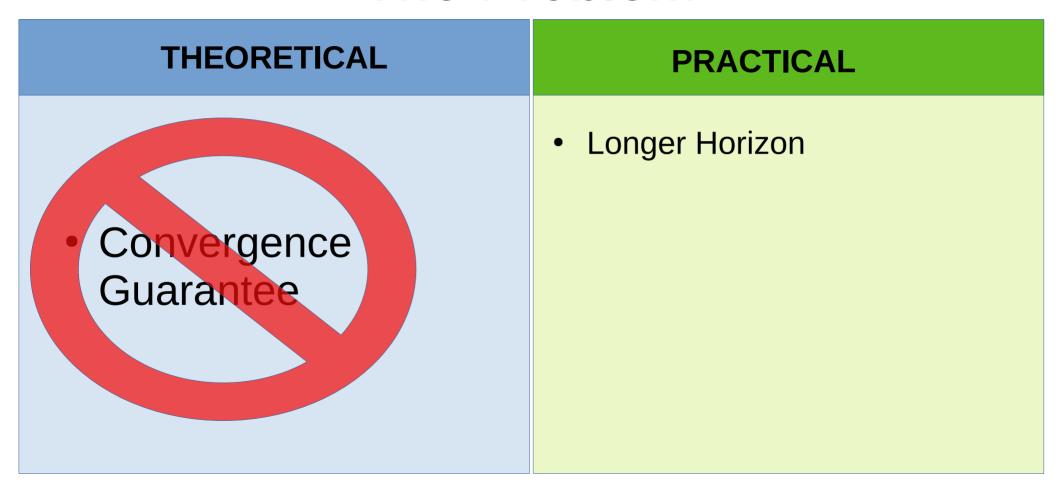


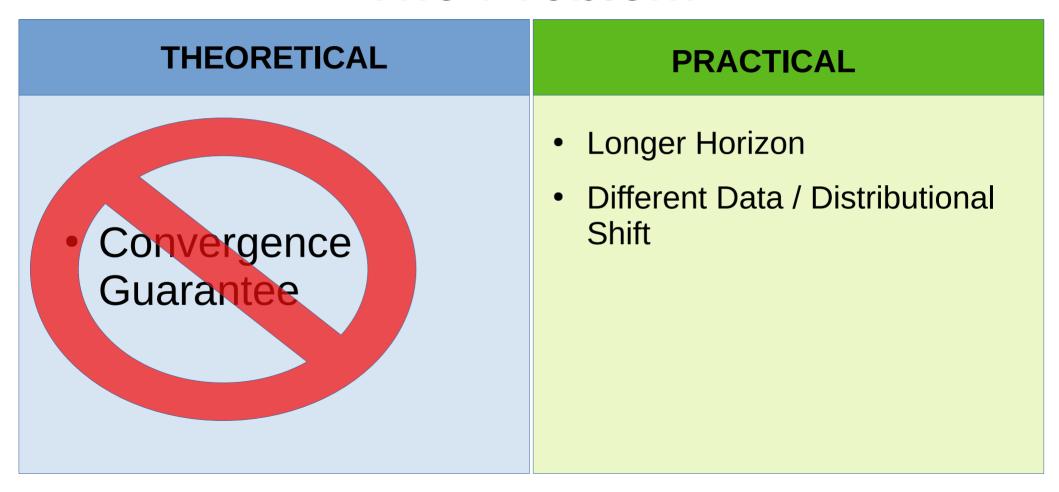
^{*} Andrychowicz et. al, Learning to Learn by Gradient Descent by Gradient Descent, Neurips 2016

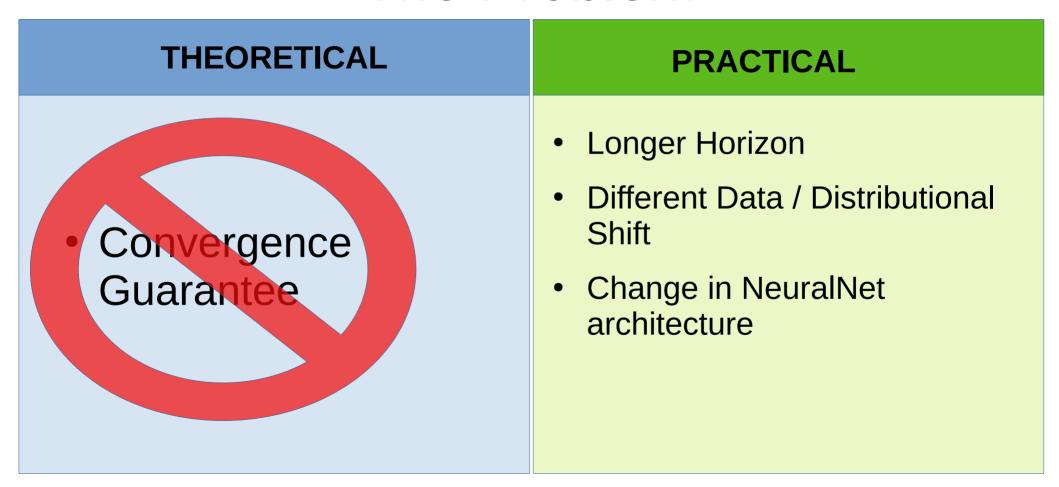


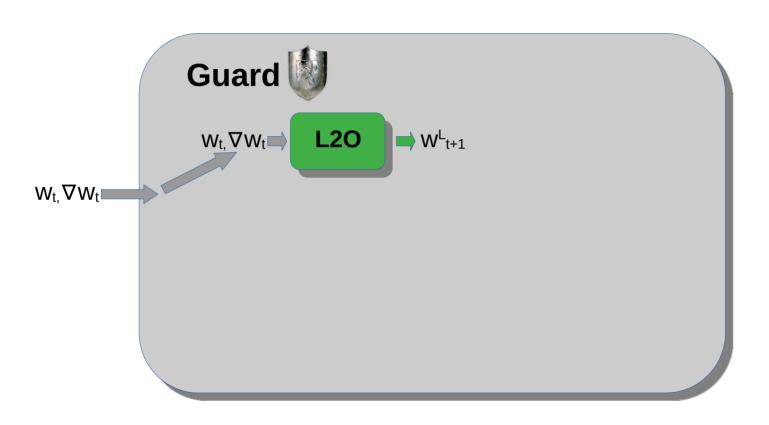


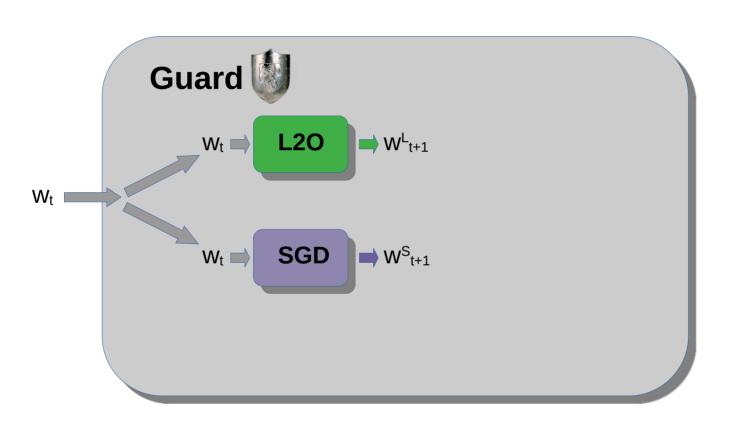


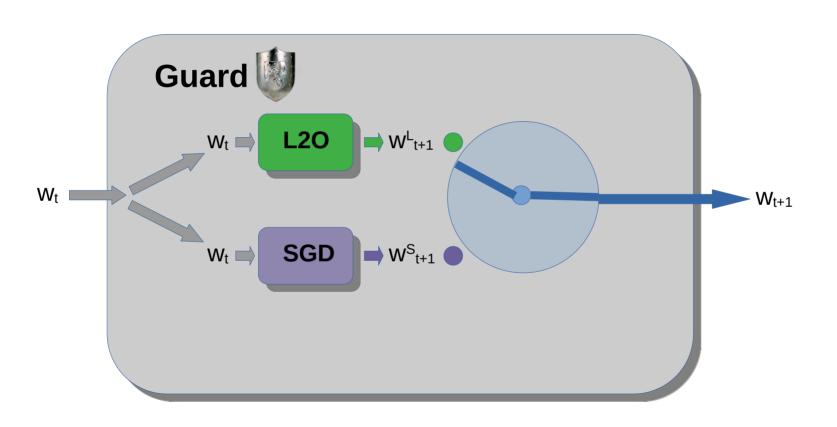


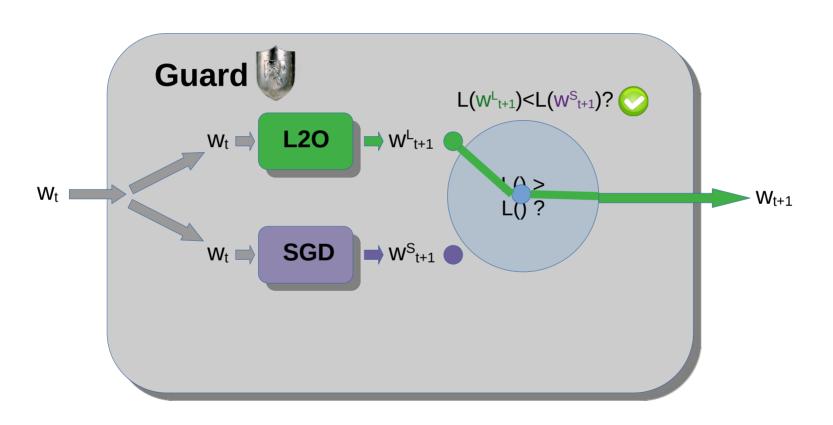


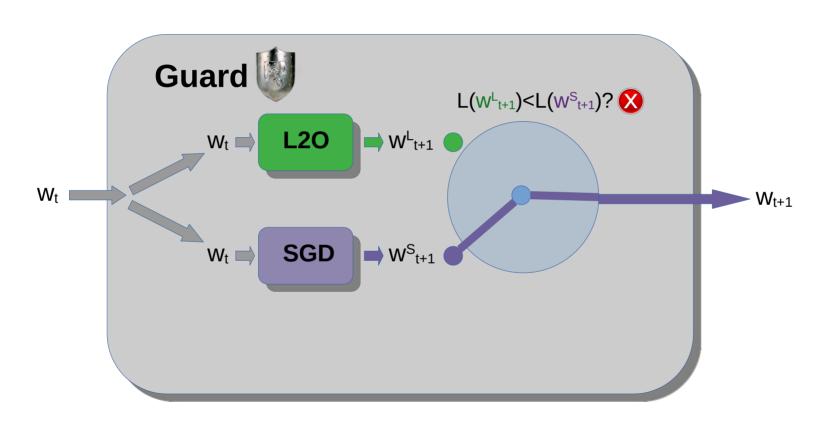










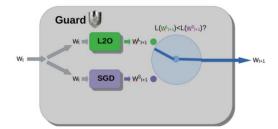


Theorem 1 Let \mathcal{F} be a continuous loss function which is μ -strongly convex¹ and L-smooth and let w^* be it's global minimum. Let $w_{i\in\mathbb{N}}$ be a sequence of points obtained from applying the Loss-Guarded L2O algorithm with gradient descent or stochastic gradient as the guarding algorithm. In the case of stochastic gradient descent, we assume that in expectation, the stochastic gradient $\nabla_{mb}\mathcal{F}(w)$ is equal to the true gradient,

$$\mathbb{E}(\nabla_{mb}\mathcal{F}(w)) = \nabla \mathcal{F}(w),$$

and that the variance of the stochastic gradient around the true gradient is bounded. Then given a constant learning rate $0 < \lambda < \min(\frac{2}{L}, 2\mu)$ for gradient descent or a decaying learning rate $\lambda_i \propto \frac{1}{i_0+i}$ for SGD, the sequence converges to the minimum, i.e.

$$\lim_{i \to \infty} w_i = w^*.$$

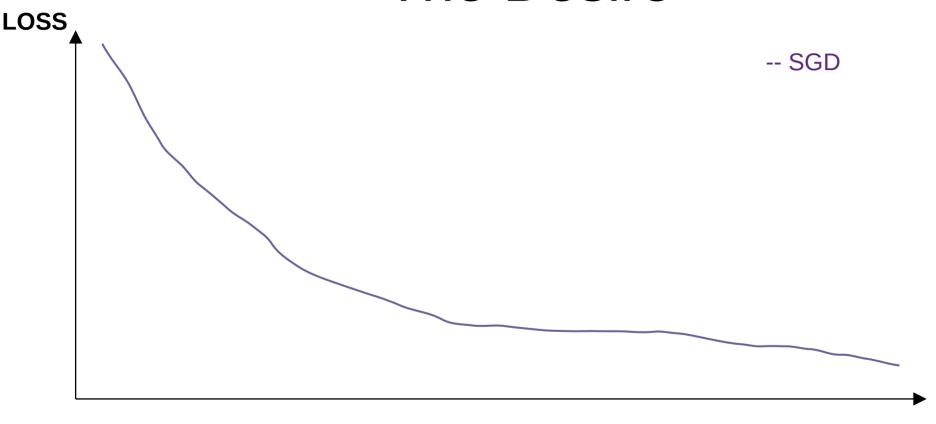


Simpler Algorithm

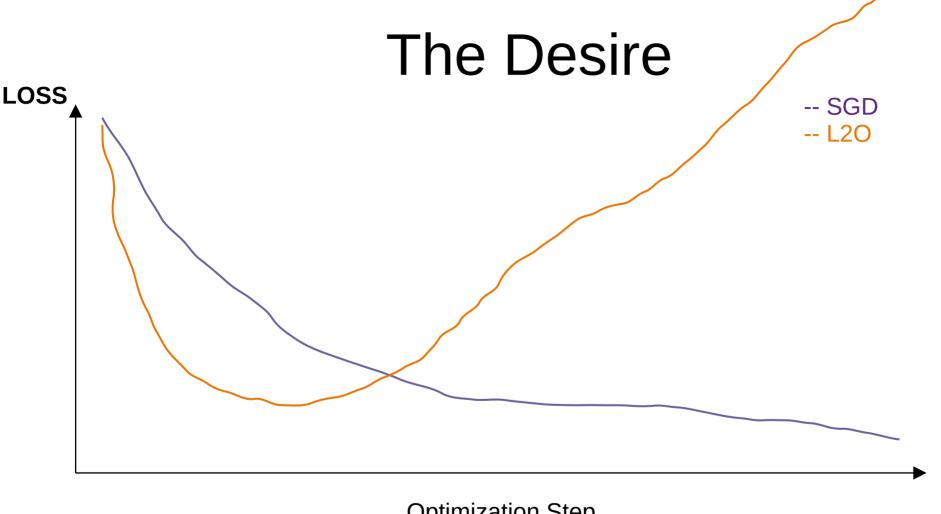
- Simpler Algorithm
- Fewer Computation of Gradients

- Simpler Algorithm
- Fewer Computation of Gradients
- Works better in Practice

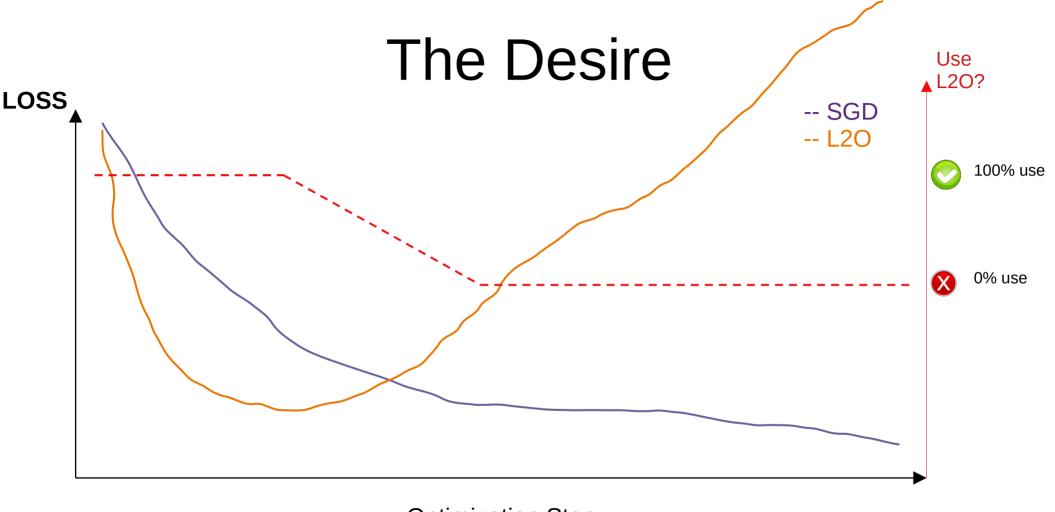
The Desire



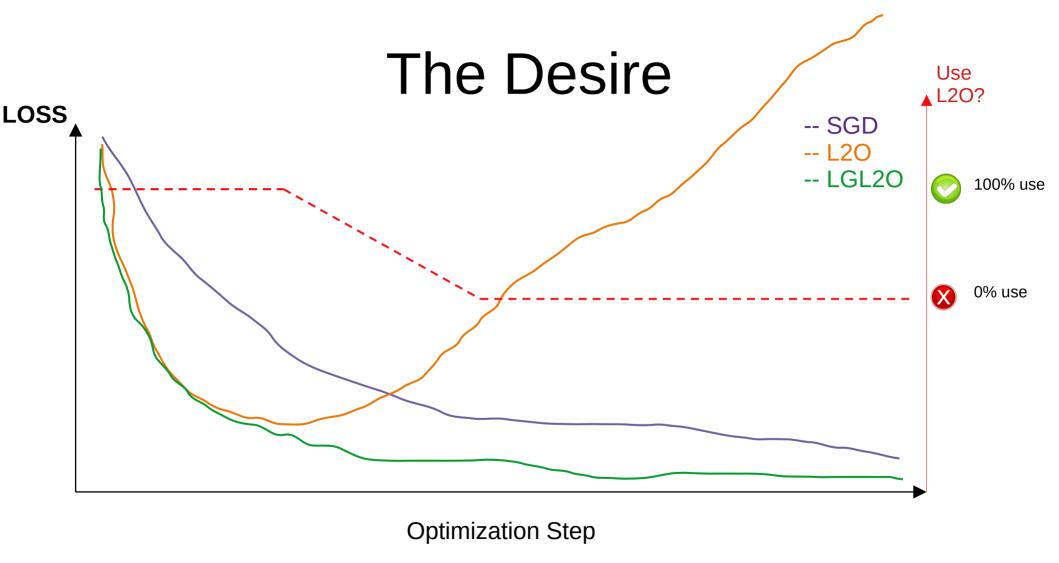
Optimization Step

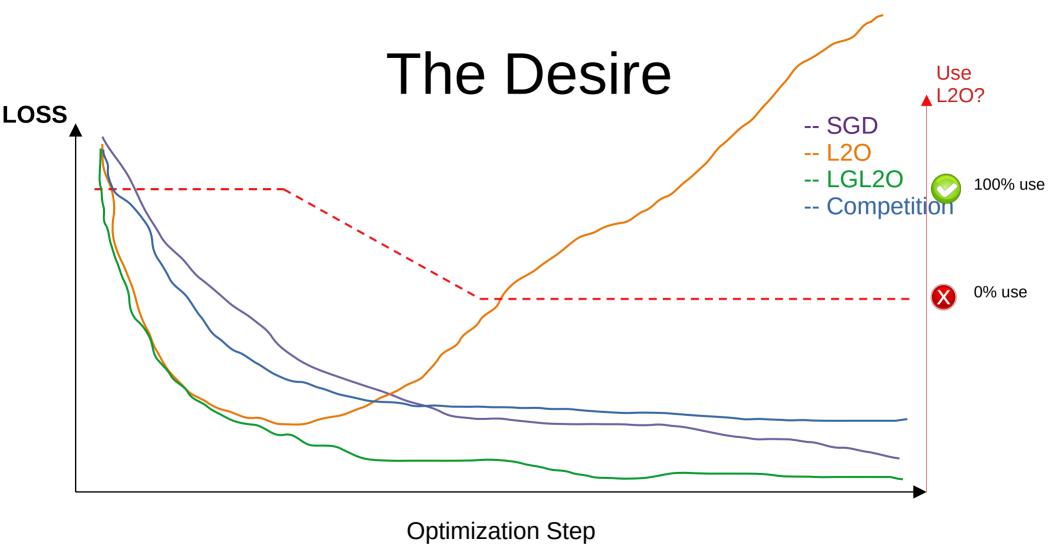


Optimization Step

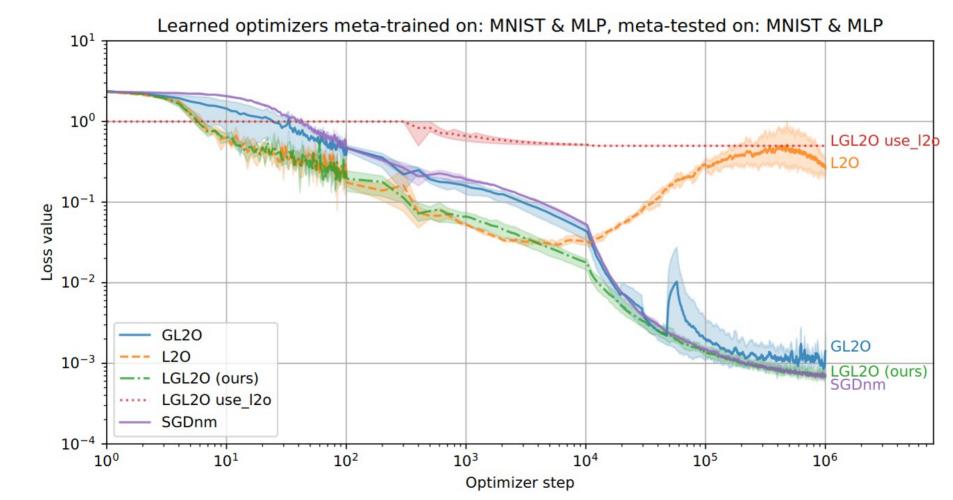


Optimization Step



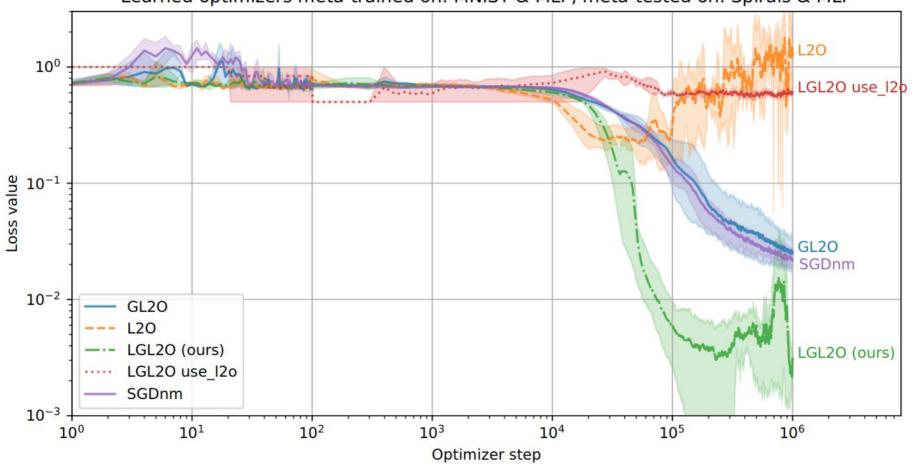


In Distribution



Out of Distribution

Learned optimizers meta-trained on: MNIST & MLP, meta-tested on: Spirals & MLP



Concluding Remarks

Guard can be used with any learned optimizer and fallback optimizer

Concluding Remarks

- Guard can be used with any learned optimizer and fallback optimizer
- Inherits the convergence guarantee of the fallback optimizer

Concluding Remarks

- Guard can be used with any learned optimizer and fallback optimizer
- Inherits the convergence guarantee of the fallback optimizer
- Empirically retains the performance of learned optimizer

Thank you

Come see our poster (ID 17027)
https://icml.cc/virtual/2022/poster/17027

https://arxiv.org/abs/2201.12426

