Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP

Liyu Chen, Rahul Jain, Haipeng Luo

University of Southern California

July 11, 2022

Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Goal-oriented reinforcement learning can be formulated as Stochastic Shortest Path (SSP) problem.

- Episodic MDP with a goal state.
- The objective is to reach the goal state with minimum cost.

Motivation

In real-world applications, the state-space is often prohibitively large.

Function approximation is necessary in practice.

We further extend our understanding of SSP with linear function approximation.

	Regret	Remark
(Vial et al., 2021)	$\sqrt{d^3 B_\star^3 K/c_{\min}}$	Inefficient
	$\mathcal{K}^{5/6}$ (ignoring other params.)	Efficient
Ours		

We further extend our understanding of SSP with linear function approximation.

	Regret	Remark
(Vial et al., 2021)	$\sqrt{d^3 B_\star^3 K/c_{\min}}$	Inefficient
	$\mathcal{K}^{5/6}$ (ignoring other params.)	Efficient
Ours	$\sqrt{d^3 B_\star^2 T_\star K}$	Efficient

We further extend our understanding of SSP with linear function approximation.

	Regret	Remark
(Vial et al., 2021)	$\sqrt{d^3 B_\star^3 K/c_{\min}}$	Inefficient
	$\mathcal{K}^{5/6}$ (ignoring other params.)	Efficient
Ours	$\sqrt{d^3 B_\star^2 T_\star K}$	Efficient
	$\frac{d^3B_{\star}^4}{c_{\min}^2gap_{\min}}\ln^5\frac{dB_{\star}K}{c_{\min}}$	Efficient, gap-dependent bound

We further extend our understanding of SSP with linear function approximation.

	Regret	Remark
(Vial et al., 2021)	$\sqrt{d^3 B_\star^3 K/c_{\min}}$	Inefficient
	$\mathcal{K}^{5/6}$ (ignoring other params.)	Efficient
Ours	$\sqrt{d^3 B_\star^2 T_\star K}$	Efficient
	$rac{d^3B_{\star}^4}{c_{\min}^2gap_{\min}}\ln^5rac{dB_{\star}K}{c_{\min}}$	Efficient, gap-dependent bound
	$\sqrt{d^7 B_\star^2 K}$	Inefficient, horizon-free regret

Problem Formulation: SSP

An SSP instance is an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, s_{\text{init}}, g, c, P).$

for episode k = 1, ..., K do learner starts in state $s_1^k = s_{init} \in S, i \leftarrow 1$

Problem Formulation: SSP

An SSP instance is an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, s_{\text{init}}, g, c, P).$

```
for episode k = 1, ..., K do

learner starts in state s_1^k = s_{init} \in S, i \leftarrow 1

while s_k^i \neq g do

learner chooses action a_i^k \in A, suffer cost c(s_i^k, a_i^k), and observes state s_{i+1}^k \sim P_{s_i^k, a_i^k}

i \leftarrow i + 1
```

Problem Formulation: SSP

An SSP instance is an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, s_{\text{init}}, g, c, P).$

for episode
$$k = 1, ..., K$$
 do
learner starts in state $s_1^k = s_{init} \in S, i \leftarrow 1$
while $s_k^i \neq g$ do
learner chooses action $a_i^k \in A$, suffer cost $c(s_i^k, a_i^k)$, and observes state $s_{i+1}^k \sim P_{s_i^k, a_i^k}$
 $i \leftarrow i + 1$

$$\text{Regret:} \quad R_{\mathcal{K}} = \sum_{k=1}^{\mathcal{K}} \sum_{i=1}^{l_k} c_i^k - \sum_{k=1}^{\mathcal{K}} V^\star(s_{\text{init}})$$

Here, $V^* = V^{\pi^*}$, $V^{\pi}(s)$ is the expected cost of policy π starting from s, $\pi^* = \operatorname{argmin}_{\pi \in \Pi} \sum_{k=1}^{K} V_k^{\pi}(s_{\text{init}})$, and Π is the set of proper policies which reaches g with probability 1.

Problem Formulation: Linear SSP

Linear SSP

There exist known feature map $\{\phi(s, a)\}_{s,a}$, unknown parameters $\theta^* \in \mathbb{R}^d$ and $\{\mu(s')\}_{s' \in S \cup \{g\}} \subseteq \mathbb{R}^d$, such that

$$c(s,a) = \phi(s,a)^{\top} \theta^{\star}, \qquad P(s'|s,a) = \phi(s,a)^{\top} \mu(s').$$

Moreover, we assume $\|\phi(s,a)\|_2 \leq 1$ for any $(s,a) \in \mathcal{S} \times \mathcal{A}$, $\|\theta^{\star}\|_2 \leq \sqrt{d}$, and $\|\int h(s')d\mu(s')\|_2 \leq \sqrt{d} \|h\|_{\infty}$ for any $h \in \mathbb{R}^{\mathcal{S}_+}$.

A natural approach is to compute optimistic value functions to guide exploration.

• **Issue:** The value function has circular dependency, which requires computing a fixed point (hard even for discounted MDP).

A natural approach is to compute optimistic value functions to guide exploration.

- **Issue:** The value function has circular dependency, which requires computing a fixed point (hard even for discounted MDP).
- In (Vial et al., 2021), they either 1) perform grid search (inefficient), or 2) find a very inaccurate fixed point with *K* dependent error (sub-optimal).

A natural approach is to compute optimistic value functions to guide exploration.

- **Issue:** The value function has circular dependency, which requires computing a fixed point (hard even for discounted MDP).
- In (Vial et al., 2021), they either 1) perform grid search (inefficient), or 2) find a very inaccurate fixed point with *K* dependent error (sub-optimal).

Our Solution:

- Finite-horizon approximation to remove circular dependency!
- Directly run LSVI-UCB (Jin et al., 2020) on the finite-horizon MDP.

Finite-Horizon Approximation

We adopt the finite-horizon approximation scheme in (Cohen et al., 2021).

• $\mathcal{M} \to \widetilde{\mathcal{M}}$: each episode in \mathcal{M} is partitioned into one or more intervals in $\widetilde{\mathcal{M}}$.

Finite-Horizon Approximation

We adopt the finite-horizon approximation scheme in (Cohen et al., 2021).

- $\mathcal{M} \to \widetilde{\mathcal{M}}$: each episode in \mathcal{M} is partitioned into one or more intervals in $\widetilde{\mathcal{M}}$.
- $\pi = \widetilde{\pi}$: directly execute $\widetilde{\pi}$ as a non-stationary policy in \mathcal{M} .

Technical Challenges & Contributions

Issue: the analysis proposed in (Cohen et al., 2021) assumes a small state-action space.

Issue: the analysis proposed in (Cohen et al., 2021) assumes a small state-action space. **Our Solution:** A new analysis of the finite-horizon approximation. **Intuition:** separate the intervals into "good" ones (g is reached) and "bad" ones (g is not reached)

- The large terminal cost implies that each bad interval contributes at least a constant regret.
- Therefore, the number of bad intervals has to be small, and the number of intervals $M = \tilde{O}(K)$.
- $\widetilde{\mathcal{O}}(\sqrt{M})$ in $\widetilde{\mathcal{M}} \implies \widetilde{\mathcal{O}}(\sqrt{K})$ in \mathcal{M} .

Technical Challenges & Contributions

Highlights:

- Much simpler analysis
- Model agnostic: Does not leverage any modeling assumption on the SSP instance.

Combining with LSVI-UCB gives the first $\tilde{\mathcal{O}}(\sqrt{K})$ regret bound efficiently.

In simpler MDP models, many algorithms are shown to achieve $\mathcal{O}(C \ln K)$ regret, where C is some gap measure.

In simpler MDP models, many algorithms are shown to achieve $\mathcal{O}(C \ln K)$ regret, where C is some gap measure.

- Gap measure: $gap_{min} = min_{s,a:gap(s,a)>0} gap(s,a)$, where $gap(s,a) = Q^*(s,a) V^*(s)$.
- **Issue:** after finite-horizon approximation, the gap measure changes to $gap_h(s, a) = Q_h^*(s, a) V_h^*(s)$.

In simpler MDP models, many algorithms are shown to achieve $\mathcal{O}(C \ln K)$ regret, where C is some gap measure.

- Gap measure: $gap_{min} = min_{s,a:gap(s,a)>0} gap(s,a)$, where $gap(s,a) = Q^{\star}(s,a) V^{\star}(s)$.
- Issue: after finite-horizon approximation, the gap measure changes to $gap_h(s, a) = Q_h^*(s, a) V_h^*(s)$.

Our Solution: just need a larger horizon $H = \tilde{O}(\frac{B_*}{c_{\min}})$.

High level idea: a two stage analysis.

For the first H/2 layers, we are able to show that Q^{*}_h(s, a) ≈ Q^{*}(s, a), and thus gap_h(s, a) ≈ gap(s, a).

High level idea: a two stage analysis.

- For the first H/2 layers, we are able to show that Q^{*}_h(s, a) ≈ Q^{*}(s, a), and thus gap_h(s, a) ≈ gap(s, a).
- For the last H/2 layers, we further consider two cases:
 - If the learner's policy is near-optimal in the first H/2 layers, then the probability of reaching the last H/2 layers is negligible.
 - Otherwise, we simply bound the costs by the number of times the learner takes non-near-optimal actions in the first H/2 layers, which is of order ln K.

High level idea: a two stage analysis.

- For the first H/2 layers, we are able to show that Q^{*}_h(s, a) ≈ Q^{*}(s, a), and thus gap_h(s, a) ≈ gap(s, a).
- For the last H/2 layers, we further consider two cases:
 - If the learner's policy is near-optimal in the first H/2 layers, then the probability of reaching the last H/2 layers is negligible.
 - Otherwise, we simply bound the costs by the number of times the learner takes non-near-optimal actions in the first H/2 layers, which is of order ln K.

Theorem

The algorithm described above ensures
$$R_K = \tilde{\mathcal{O}}\left(rac{d^3 B_\star^4}{c_{\min}^2 ga
ho_{\min}} \ln^5 rac{d B_\star K}{c_{\min}}
ight)$$
.

The T_{\star} or $\frac{1}{c_{\min}}$ dependency is mostly likely unnecessary suggested by the lower bound $\Omega(dB_{\star}\sqrt{K})$ (Min et al., 2021).

Question: can we obtain horizon-free regret, that is, no polynomial dependency on T_{\star} or $\frac{1}{c_{\min}}$?

The T_{\star} or $\frac{1}{c_{\min}}$ dependency is mostly likely unnecessary suggested by the lower bound $\Omega(dB_{\star}\sqrt{K})$ (Min et al., 2021).

Question: can we obtain horizon-free regret, that is, no polynomial dependency on T_{\star} or $\frac{1}{c_{\min}}$?

Challenges: constructing variance-aware confidence bound is highly non-trivial with linear function approximation, which is known to be the key for obtaining horizon-free regret.

Horizon-Free Regret

Initialize: t = t' = 1, k = 1, $s_1 = s_{\text{init}}$, $B_1 = 1$. **Define:** $V_{w,B}(s) = \min_a [\phi(s, a)^\top w]_{[0,2B]}$, $s'_0 = g$, and $V_t = V_{w_t,B_t}$.

Horizon-Free Regret

```
Initialize: t = t' = 1, k = 1, s_1 = s_{init}, B_1 = 1.
Define: V_{w,B}(s) = \min_{a} [\phi(s, a)^{\top} w]_{[0,2B]}, s'_{0} = g, and V_{t} = V_{wt,Bt}.
while k < K do
    if s'_{t-1} = g or some quantity is "doubled" or V_{t'}(s_t) = 2B_t then
         while True do
             Compute w_t = \operatorname{argmin}_{w \in \Omega_t(w, B_t)} V_{w, B_t}(s_t).
            if V_t(s_t) > B_t then B_t \leftarrow 2B_t; else break.
        Record the most recent update time t' \leftarrow t.
    else (w_t, B_t) = (w_{t-1}, B_{t-1}).
```

Horizon-Free Regret

```
Initialize: t = t' = 1, k = 1, s_1 = s_{init}, B_1 = 1.
Define: V_{w,B}(s) = \min_{a} [\phi(s, a)^{\top} w]_{[0,2B]}, s'_{0} = g, and V_{t} = V_{wt,Bt}.
while k < K do
    if s'_{t-1} = g or some quantity is "doubled" or V_{t'}(s_t) = 2B_t then
         while True do
             Compute w_t = \operatorname{argmin}_{w \in \Omega_t(w, B_t)} V_{w, B_t}(s_t).
          if V_t(s_t) > B_t then B_t \leftarrow 2B_t; else break.
        Record the most recent update time t' \leftarrow t.
    else (w_t, B_t) = (w_{t-1}, B_{t-1}).
    Take action a_t = \operatorname{argmin}_{2} \phi(s_t, a)^{\top} w_t, suffer cost c_t = c(s_t, a_t), and transits to s'_t.
    if s'_t = g then s_{t+1} = s_{init}, k \leftarrow k+1; else s_{t+1} = s'_t.
    Increment time step t \leftarrow t + 1.
```

Technical Highlights

- The construction of transition confidence set is similar to (Zhang et al., 2021), but importantly it computes some fixed point within the decision set.
- Maintain an estimate B_t of B_{\star} , which waives the knowledge of B_{\star} .
- The overestimate update condition $V_{t'}(s_t) = 2B_t$ helps remove a $d^{1/4}$ factor.

Technical Highlights

- The construction of transition confidence set is similar to (Zhang et al., 2021), but importantly it computes some fixed point within the decision set.
- Maintain an estimate B_t of B_* , which waives the knowledge of B_* .
- The overestimate update condition $V_{t'}(s_t) = 2B_t$ helps remove a $d^{1/4}$ factor.

Theorem

The algorithm described above ensures $R_{K} = \tilde{\mathcal{O}}\left(\sqrt{d^{7}B_{\star}^{2}K}\right)$.

Conclusion

We further extend our understanding of SSP with linear function approximation.

	Regret	Remark
(Vial et al., 2021)	$\sqrt{d^3 B_\star^3 K/c_{\min}}$	Inefficient
	$\mathcal{K}^{5/6}$ (ignoring other params.)	Efficient
Ours	$\sqrt{d^3 B_\star^2 T_\star K}$	Efficient
	$\frac{d^3B_{\star}^4}{c_{\min}^2gap_{\min}}\ln^5\frac{dB_{\star}K}{c_{\min}}$	Efficient, gap-dependent bound
	$\sqrt{d^7 B_\star^2 K}$	Inefficient, horizon-free regret