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Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Goal-oriented reinforcement learning can be formulated as Stochastic Shortest Path
(SSP) problem.

• Episodic MDP with a goal state.

• The objective is to reach the goal state with minimum cost.
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Motivation
In real-world applications, the state-space is often prohibitively large.

Function approximation is necessary in practice.
Image source: https://arxiv.org/pdf/1712.06180.pdf
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Our Contributions
We further extend our understanding of SSP with linear function approximation.

Regret Remark

(Vial et al., 2021)

√
d3B3

⋆K/cmin Inefficient

K 5/6 (ignoring other params.) Efficient

Ours

√
d3B2

⋆T⋆K Efficient

d3B4
⋆

c2mingapmin
ln5 dB⋆K

cmin
Efficient, gap-dependent bound√

d7B2
⋆K Inefficient, horizon-free regret

d : feature dimension, cmin: minimum cost, gapmin: minimum sub-optimality gap
B⋆: maximum expected cost of optimal policy over all states

T⋆: maximum hitting time of optimal policy over all states, K : #episodes
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Problem Formulation: SSP

An SSP instance is an MDPM = (S,A, sinit, g , c ,P).

for episode k = 1, . . . ,K do
learner starts in state sk1 = sinit ∈ S, i ← 1

while s ik ̸= g do
learner chooses action aki ∈ A, suffer cost c(ski , aki ), and observes state ski+1 ∼ Pski ,a

k
i

i ← i + 1

Regret: RK =
K∑

k=1

Ik∑
i=1

cki −
K∑

k=1

V ⋆(sinit)

Here, V ⋆ = V π⋆
, V π(s) is the expected cost of policy π starting from s,

π⋆ = argminπ∈Π
∑K

k=1 V
π
k (sinit), and Π is the set of proper policies which reaches g with

probability 1.
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Problem Formulation: Linear SSP

Linear SSP

There exist known feature map {ϕ(s, a)}s,a, unknown parameters θ⋆ ∈ Rd and
{µ(s ′)}s′∈S∪{g} ⊆ Rd , such that

c(s, a) = ϕ(s, a)⊤θ⋆, P(s ′|s, a) = ϕ(s, a)⊤µ(s ′).

Moreover, we assume ∥ϕ(s, a)∥2 ≤ 1 for any (s, a) ∈ S ×A, ∥θ⋆∥2 ≤
√
d , and∥∥∫ h(s ′)dµ(s ′)

∥∥
2
≤
√
d ∥h∥∞ for any h ∈ RS+ .
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√
K Regret Bound

A natural approach is to compute optimistic value functions to guide exploration.

• Issue: The value function has circular dependency, which requires computing a fixed
point (hard even for discounted MDP).

• In (Vial et al., 2021), they either 1) perform grid search (inefficient), or 2) find a
very inaccurate fixed point with K dependent error (sub-optimal).

Our Solution:

• Finite-horizon approximation to remove circular dependency!

• Directly run LSVI-UCB (Jin et al., 2020) on the finite-horizon MDP.
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Finite-Horizon Approximation

We adopt the finite-horizon approximation scheme in (Cohen et al., 2021).

• M → M̃: each episode in
M is partitioned into one
or more intervals in M̃.

• π = π̃: directly execute π̃
as a non-stationary policy
inM.
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Technical Challenges & Contributions

Issue: the analysis proposed in (Cohen et al., 2021) assumes a small state-action space.

Our Solution: A new analysis of the finite-horizon approximation.
Intuition: separate the intervals into “good” ones (g is reached) and “bad” ones (g is
not reached)

• The large terminal cost implies that each bad interval contributes at least a constant
regret.

• Therefore, the number of bad intervals has to be small, and the number of intervals
M = Õ(K ).

• Õ(
√
M) in M̃ =⇒ Õ(

√
K ) inM.
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Technical Challenges & Contributions

Highlights:

• Much simpler analysis

• Model agnostic: Does not leverage any modeling assumption on the SSP instance.

Combining with LSVI-UCB gives the first Õ(
√
K ) regret bound efficiently.
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Gap-Dependent Bound

In simpler MDP models, many algorithms are shown to achieve O(C lnK ) regret, where
C is some gap measure.

• Gap measure: gapmin = mins,a:gap(s,a)>0 gap(s, a), where
gap(s, a) = Q⋆(s, a)− V ⋆(s).

• Issue: after finite-horizon approximation, the gap measure changes to
gaph(s, a) = Q⋆

h(s, a)− V ⋆
h (s).

Our Solution: just need a larger horizon H = Õ( B⋆
cmin

).
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Gap-Dependent Bound

High level idea: a two stage analysis.

• For the first H/2 layers, we are able to show that Q⋆
h(s, a) ≈ Q⋆(s, a), and thus

gaph(s, a) ≈ gap(s, a).

• For the last H/2 layers, we further consider two cases:
• If the learner’s policy is near-optimal in the first H/2 layers, then the probability of

reaching the last H/2 layers is negligible.
• Otherwise, we simply bound the costs by the number of times the learner takes

non-near-optimal actions in the first H/2 layers, which is of order lnK .

Theorem

The algorithm described above ensures RK = Õ
(

d3B4
⋆

c2mingapmin
ln5 dB⋆K

cmin

)
.
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Horizon-Free Regret

The T⋆ or 1
cmin

dependency is mostly likely unnecessary suggested by the lower bound

Ω(dB⋆

√
K ) (Min et al., 2021).

Question: can we obtain horizon-free regret, that is, no polynomial dependency on T⋆ or
1

cmin
?

Challenges: constructing variance-aware confidence bound is highly non-trivial with linear
function approximation, which is known to be the key for obtaining horizon-free regret.
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Horizon-Free Regret

Initialize: t = t ′ = 1, k = 1, s1 = sinit, B1 = 1.
Define: Vw ,B(s) = mina[ϕ(s, a)

⊤w ][0,2B], s
′
0 = g , and Vt = Vwt ,Bt .

while k ≤ K do
if s ′t−1 = g or some quantity is “doubled” or Vt′(st) = 2Bt then

while True do
Compute wt = argminw∈Ωt(w ,Bt) Vw ,Bt (st).

if Vt(st) > Bt then Bt ← 2Bt ; else break.

Record the most recent update time t ′ ← t.

else (wt ,Bt) = (wt−1,Bt−1).

Take action at = argmina ϕ(st , a)
⊤wt , suffer cost ct = c(st , at), and transits to s ′t .

if s ′t = g then st+1 = sinit, k ← k + 1; else st+1 = s ′t .
Increment time step t ← t + 1.
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Horizon-free Regret

Technical Highlights

• The construction of transition confidence set is similar to (Zhang et al., 2021), but
importantly it computes some fixed point within the decision set.

• Maintain an estimate Bt of B⋆, which waives the knowledge of B⋆.

• The overestimate update condition Vt′(st) = 2Bt helps remove a d1/4 factor.

Theorem

The algorithm described above ensures RK = Õ
(√

d7B2
⋆K

)
.
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