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Counterfactual Explanations in High-Stakes Applications

Motivation: Reliably guide an applicant on how they can change the model outcome
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Counterfactual Explanation
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How do we provide counterfactual explanations that are

not only “closest” but also robust to model changes?




Problem Statement

Given a data point x € X such that M(x) < 0.5, our goal is to find a
counterfactual x” with M (x") > 0.5 that meets our requirements:

* Close, i.e., ||x — x'||, is low
 Valid after changes to the model, i.e., M,,,,, (x") > 0.5
e Realistic with respect to the data manifold, i.e., has a better LOF
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Related Works:
[Upadhyay et al.”21][Rawal et al.”21][Black et al.”21]

Our focus:
Tree-based models



Contribution 1: Counterfactual Stability

A Novel Measure to Quantify Robustness for Tree-Based Ensembles
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Contribution 2: Conservative Counterfactuals

Nearest neighbor in the dataset on the other side of the decision boundary
that also has high stability, i.e., R ;2(x, M) = 7 (stability test)

C: Conservative Counterfactual
(Closest Data-Support Counterfactual
that is also Well-Within the boundary)

B: Closest Data-Support Counterfactual

A: Closest Counterfactual

(@ Theoretical Robustness Guarantee
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Contribution 3: RobX Algorithm

Finds counterfactuals that are close, robust, and realistic

® Can be applied on top of any base-method of counterfactual generation for
tree-based models, e.g., Feature Tweaking, FOCUS, FACE, kNN, etc.

® |teratively refines the generated counterfactual and keeps moving it towards

a conservative counterfactual until Ry ;2(x, M) = 7 (stability test)

Experimental Results on GERMAN CREDIT and HELOC datasets:
More robust (validity) and realistic (LOF) with slight increase in distance (Lp norm)
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