Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces



Yinglun Zhu¹ and Paul Mineiro² ¹University of Wisconsin-Madison ²Microsoft Research NYC

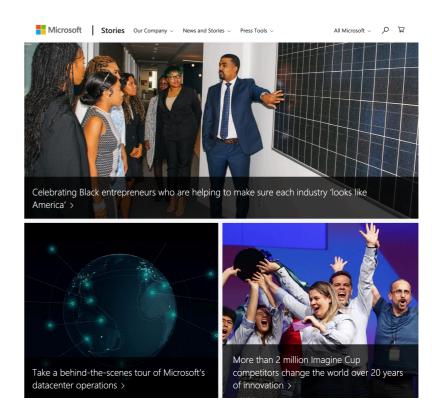
For each round t = 1, ..., T:

• Receive context x_t .

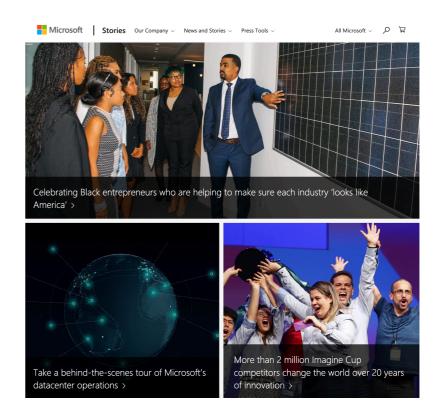
- Receive context x_t .
- Select action $a_t \in \mathscr{A}$.

- Receive context x_t .
- Select action $a_t \in \mathscr{A}$.
- Observe loss $\ell_t(a_t) \in [0,1]$.

- Receive context x_t .
- Select action $a_t \in \mathscr{A}$.
- Observe loss $\ell_t(a_t) \in [0,1]$.



- Receive context x_t .
- Select action $a_t \in \mathscr{A}$.
- Observe loss $\ell_t(a_t) \in [0,1]$.



Goal: Minimize regret
$$\operatorname{Reg}_{CB}(T) := \sum_{t=1}^{T} \ell_t(a_t) - \ell_t(\pi^{\star}(x_t)).$$

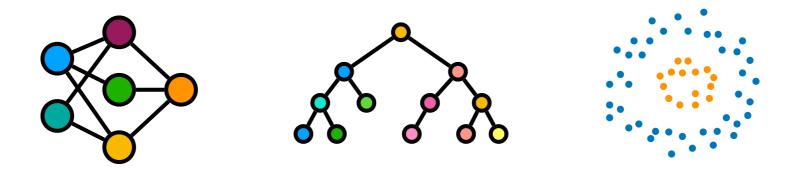
A standard realizability assumption

We assume $f^* := \mathbb{E}[\ell_t | x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

A standard realizability assumption

We assume $f^* := \mathbb{E}[\ell_t | x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

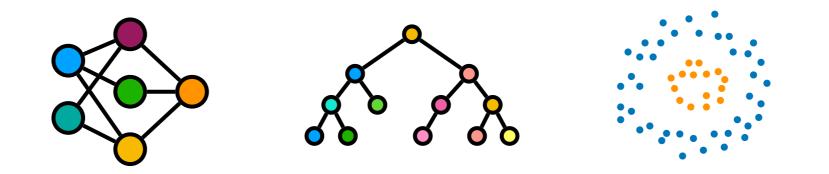
Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.



A standard realizability assumption

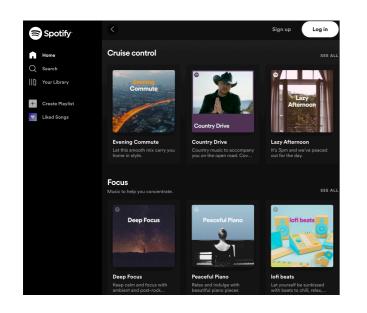
We assume $f^* := \mathbb{E}[\ell_t | x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.

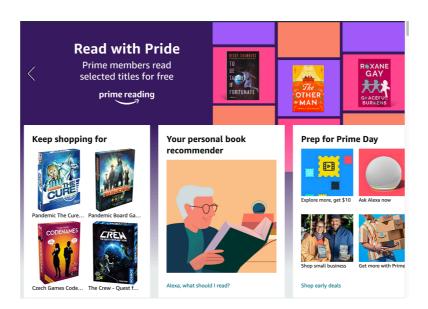


Theorem (Foster et al. 2020, Simchi-Levi et al. 2021)

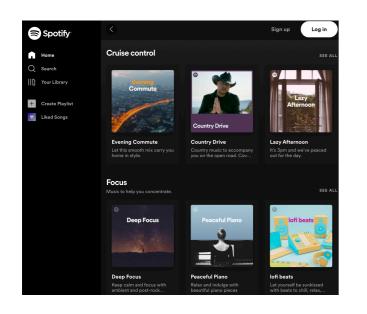
There exist efficient ALGs that achieve regret $O(\sqrt{|\mathscr{A}|T \log |\mathscr{F}|})$.



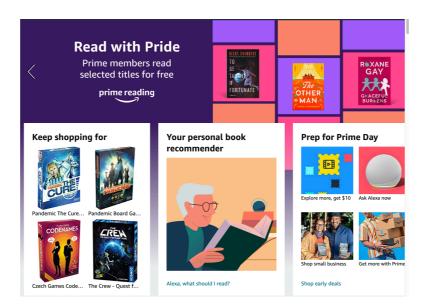
Spotify: 82 million songs



Amazon: 353 million commodities

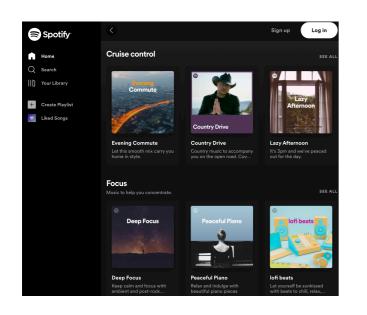


Spotify: 82 million songs

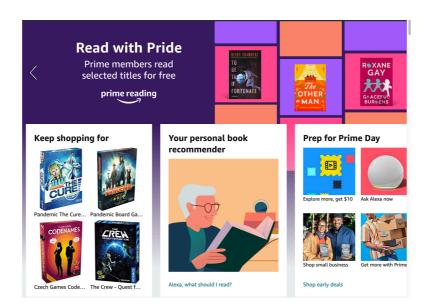


Amazon: 353 million commodities

Search: dozens of billions of documents



Spotify: 82 million songs



Amazon: 353 million commodities

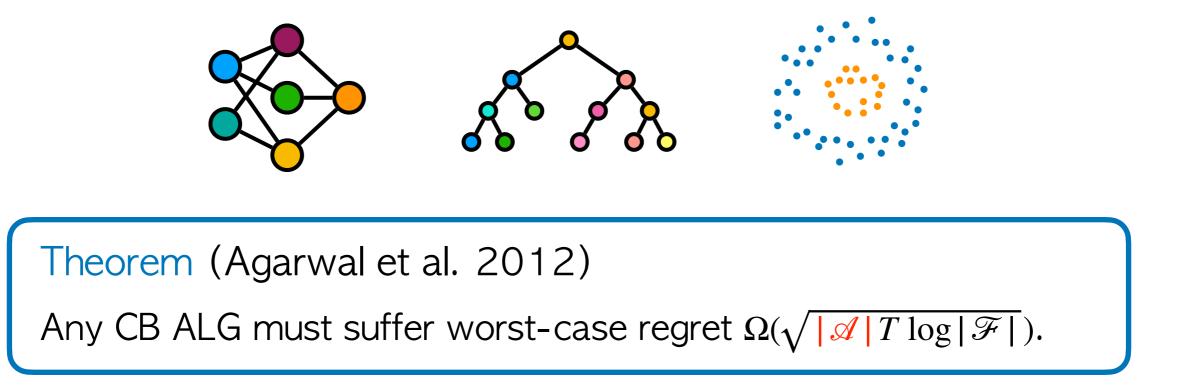
Search: dozens of billions of documents

Personalized dynamic pricing: Continuous domain

A standard realizability assumption

We assume $f^* := \mathbb{E}[\ell_t | x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

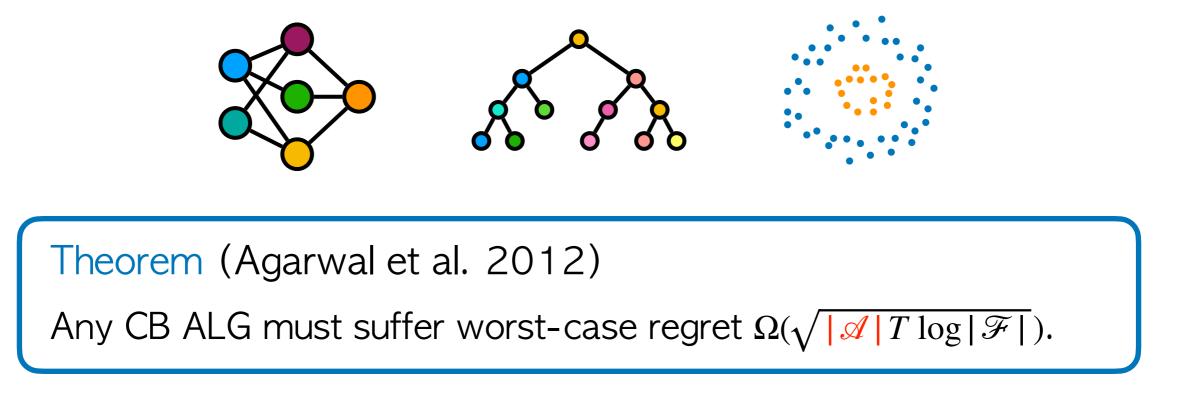
Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.



A standard realizability assumption

We assume $f^* := \mathbb{E}[\ell_t | x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.



Question: Can we develop efficient ALGs to handle large action space problems?

Linearity

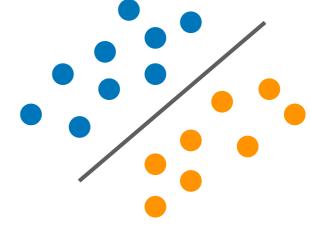
f takes the form $f(x, a) := \langle \phi(x, a), \theta \rangle$ for an unknown $\theta \in \mathbb{R}^d$.

Studied in AL '99, Auer '02, CLRS '11, APS, '11, etc.

Linearity

f takes the form $f(x, a) := \langle \phi(x, a), \theta \rangle$ for an unknown $\theta \in \mathbb{R}^d$.

Studied in AL '99, Auer '02, CLRS '11, APS, '11, etc.

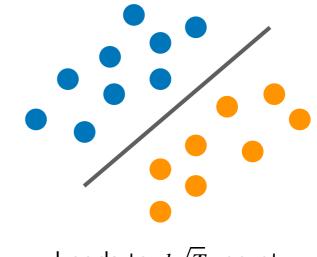


Leads to $d\sqrt{T}$ regret

Linearity

f takes the form $f(x, a) := \langle \phi(x, a), \theta \rangle$ for an unknown $\theta \in \mathbb{R}^d$.

Studied in AL '99, Auer '02, CLRS '11, APS, '11, etc.



Leads to $d\sqrt{T}$ regret

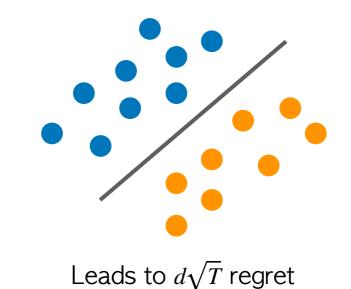
Lipschitzness f is a 1-Lipschitz function.

Studied in Agr '95, Kle '04, AOS '07, Sli, '14, etc.

Linearity

f takes the form $f(x, a) := \langle \phi(x, a), \theta \rangle$ for an unknown $\theta \in \mathbb{R}^d$.

Studied in AL '99, Auer '02, CLRS '11, APS, '11, etc.



Leads to $T^{2/3}$ regret

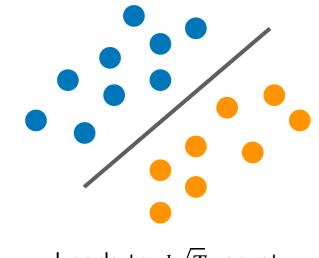
Lipschitzness f is a 1-Lipschitz function.

Studied in Agr '95, Kle '04, AOS '07, Sli, '14, etc.

Linearity

f takes the form $f(x, a) := \langle \phi(x, a), \theta \rangle$ for an unknown $\theta \in \mathbb{R}^d$.

Studied in AL '99, Auer '02, CLRS '11, APS, '11, etc.



Leads to $d\sqrt{T}$ regret



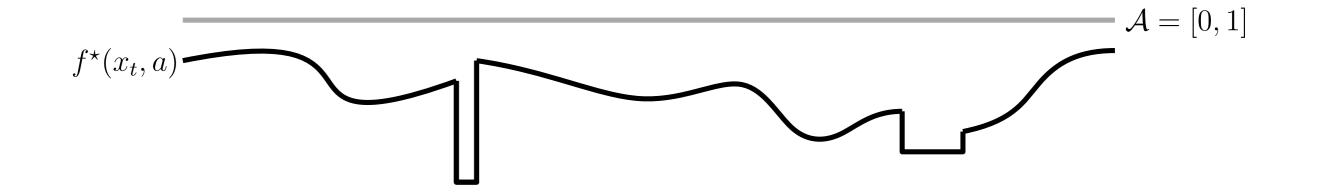
Leads to $T^{2/3}$ regret

Lipschitzness *f* is a 1-Lipschitz function.

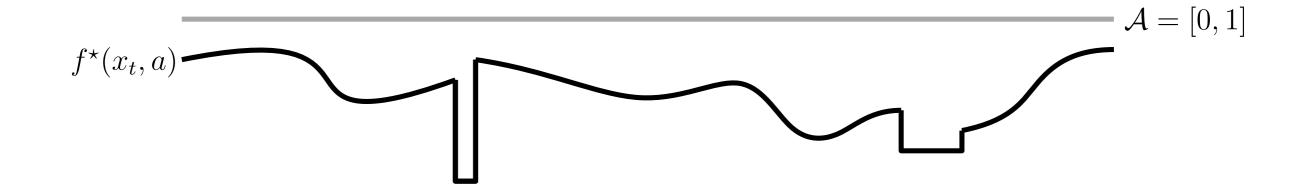
Studied in Agr '95, Kle '04, AOS '07, Sli, '14, etc.

Led to fruitful theoretical developments; but assumptions can be violated.

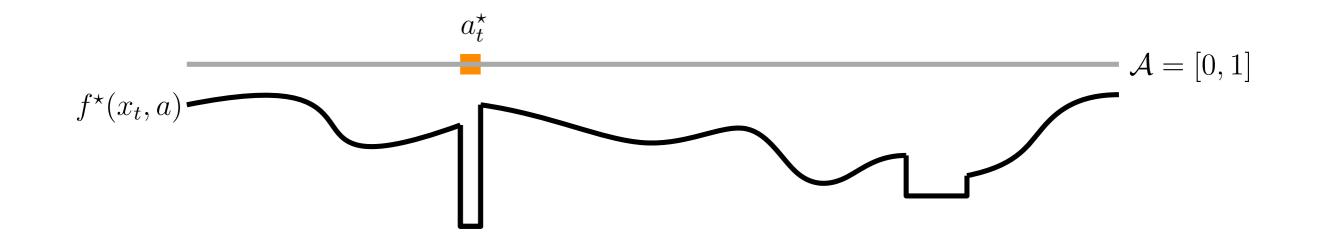
Beyond structural assumptions

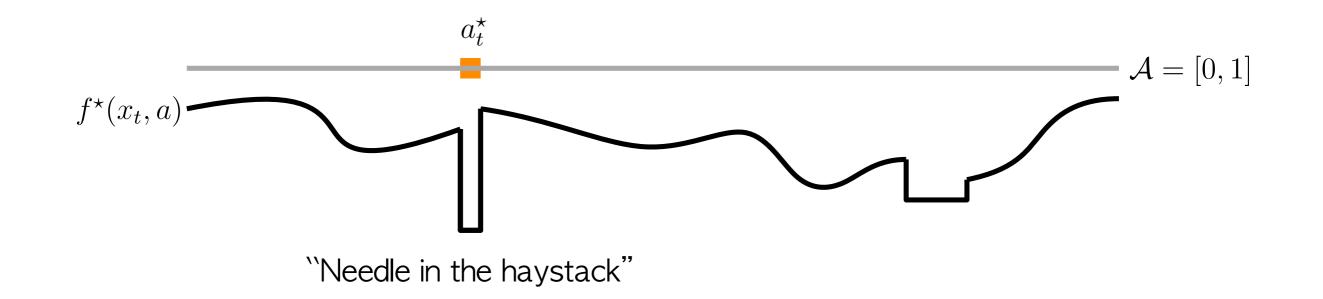


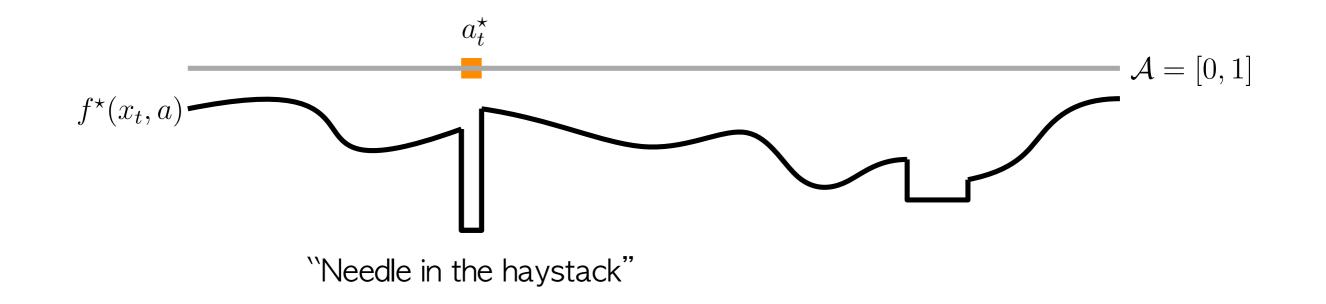
Beyond structural assumptions



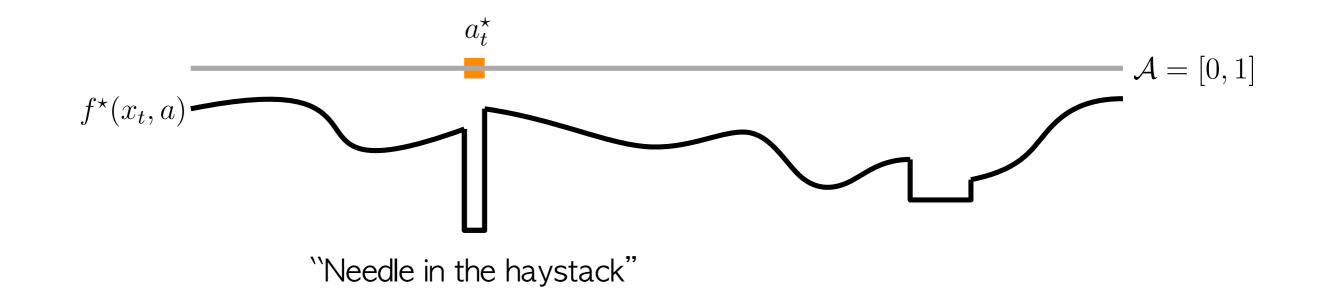
Difficulty: Need to handle general unstructured regression functions.





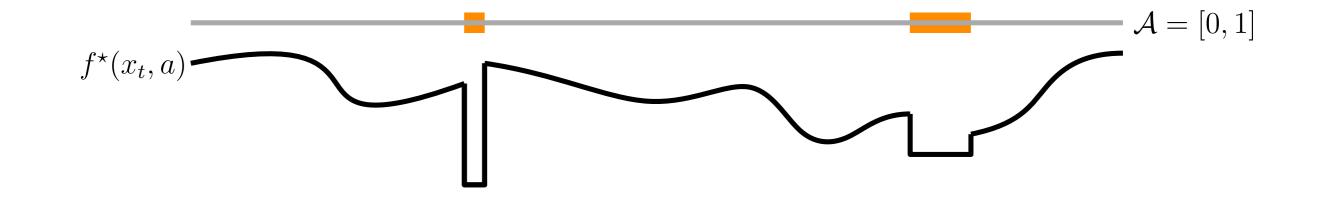


Let μ be a base probability measure. Fix $h \in (0,1]$. Define $\mathcal{Q}_h := \{Q : dQ/d\mu \le 1/h\}$



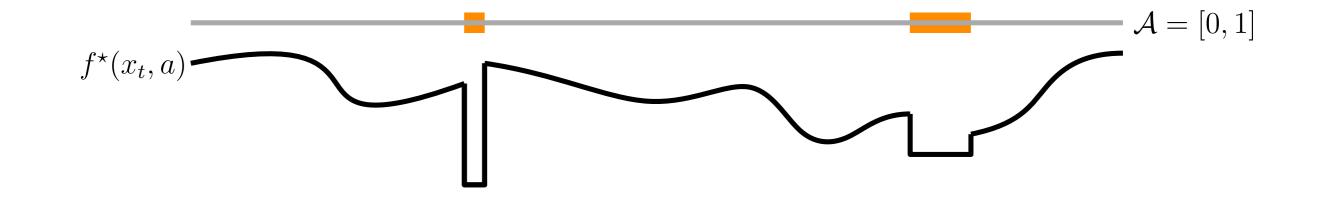
Let μ be a base probability measure. Fix $h \in (0,1]$. Define $\mathcal{Q}_h := \{Q : dQ/d\mu \le 1/h\}$

Compete against smoothed benchmark Smooth_h(x_t) := $\inf_{Q \in Q_h} \mathbb{E}_{a \sim Q}[f^*(x_t, a)]$



Let μ be a base probability measure. Fix $h \in (0,1]$. Define $\mathcal{Q}_h := \{Q : dQ/d\mu \le 1/h\}$

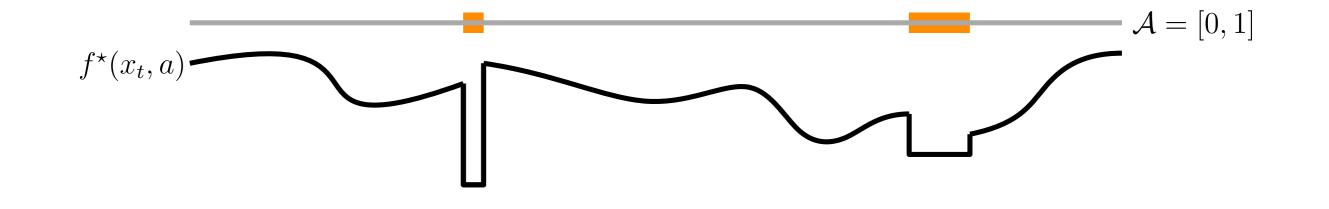
Compete against smoothed benchmark Smooth_h(x_t) := $\inf_{Q \in Q_h} \mathbb{E}_{a \sim Q}[f^*(x_t, a)]$



Let μ be a base probability measure. Smooth Fix $h \in (0,1]$. Define $\mathcal{Q}_h := \{Q : dQ/d\mu \le 1/h\}$

Compete against smoothed benchmark Smooth_h(x_t) := $\inf_{Q \in Q_h} \mathbb{E}_{a \sim Q}[f^*(x_t, a)]$

Goal: Minimize smooth regret
$$\operatorname{Reg}_{\operatorname{CB},h}(T) := \sum_{t=1}^{T} f^{\star}(x_t, a_t) - \operatorname{Smooth}_h(x_t)$$

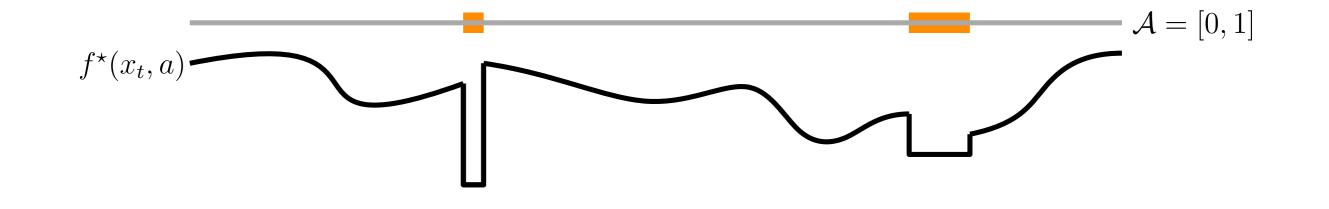


Let μ be a base probability measure. Fix $h \in (0,1]$. Define $Q_h := \{Q : dQ/d\mu \le 1/h\}$

Compete against smoothed benchmark Smooth_h(x_t) := $\inf_{Q \in Q_h} \mathbb{E}_{a \sim Q}[f^*(x_t, a)]$

• Stronger than previous proposed smoothed benchmarks, e.g., Chaudhuri et al. 2018, Krishnamurthy et al. 2020.

Goal: Minimize smooth regret $\operatorname{Reg}_{\operatorname{CB},h}(T) := \sum_{t=1}^{T} f^{\star}(x_t, a_t) - \operatorname{Smooth}_h(x_t)$



Let μ be a base probability measure. Fix $h \in (0,1]$. Define $Q_h := \{Q : dQ/d\mu \le 1/h\}$

Compete against smoothed benchmark Smooth_h(x_t) := $\inf_{Q \in Q_h} \mathbb{E}_{a \sim Q}[f^*(x_t, a)]$

• Stronger than previous proposed smoothed benchmarks, e.g., Chaudhuri et al. 2018, Krishnamurthy et al. 2020.

Goal: Minimize smooth regret $\operatorname{Reg}_{\operatorname{CB},h}(T) := \sum_{t=1}^{T} f^{\star}(x_t, a_t) - \operatorname{Smooth}_h(x_t)$

• Recover minimax guarantees under standard regret and additional structural assumptions

Computational oracles

Computational oracles

$$\begin{aligned} & \text{Regression oracle} \\ & \text{Online regression oracle such that} \\ & \sum_{t=1}^{T} \left(\hat{f}_t(x_t, a_t) - \ell_t(a_t) \right)^2 - \inf_{f \in \mathscr{F}} \sum_{t=1}^{T} \left(f(x_t, a_t) - \ell_t(a_t) \right)^2 \leq \text{Reg}_{\mathsf{Sq}}(T) \,. \end{aligned}$$

- $\operatorname{Reg}_{Sq}(T) = O(\log|\mathscr{F}|)$ for general \mathscr{F} using Vovk's aggregation algorithm (Vovk '98).
- Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21.

Computational oracles

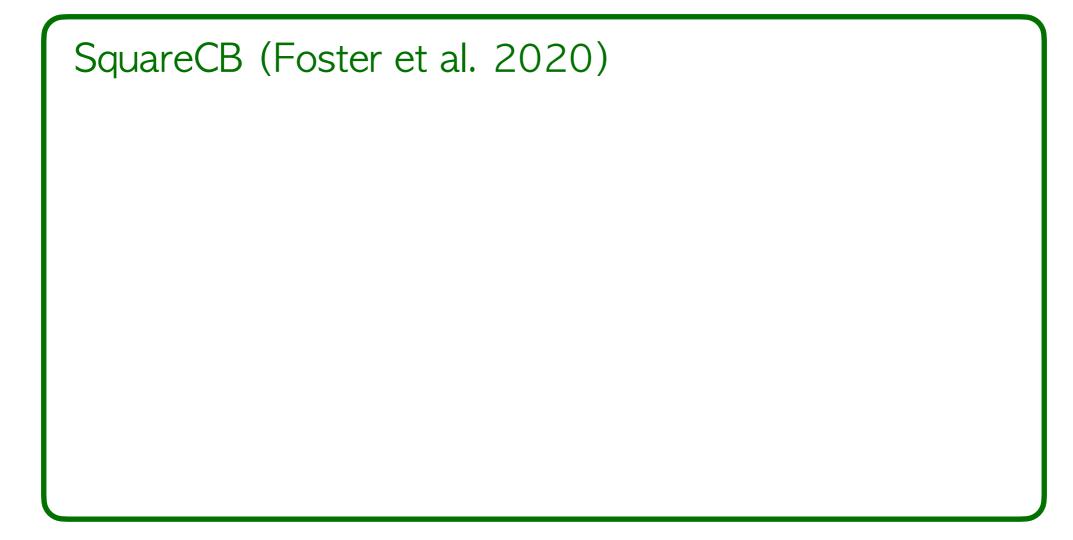
$$\begin{aligned} & \text{Regression oracle} \\ & \text{Online regression oracle such that} \\ & \sum_{t=1}^{T} \left(\hat{f}_t(x_t, a_t) - \ell_t(a_t) \right)^2 - \inf_{f \in \mathscr{F}} \sum_{t=1}^{T} \left(f(x_t, a_t) - \ell_t(a_t) \right)^2 \leq \text{Reg}_{\mathsf{Sq}}(T) \,. \end{aligned}$$

- $\operatorname{Reg}_{Sq}(T) = O(\log|\mathcal{F}|)$ for general \mathcal{F} using Vovk's aggregation algorithm (Vovk '98).
- Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21.

Sampling oracle

Sample action $a \sim \mu$ from the base probability measure μ .

• $O(H(\mu))$ time to generate a random sample $a \sim \mu$ using DDG Tree (KY '76).



SquareCB (Foster et al. 2020) At each round t = 1, ..., T:

SquareCB (Foster et al. 2020)

```
At each round t = 1, ..., T:
```

• Obtain x_t from nature and \hat{f}_t from regression oracle.

SquareCB (Foster et al. 2020)

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathscr{A}} \hat{f}_t(x_t, a)$.

SquareCB (Foster et al. 2020)

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathscr{A}} \hat{f}_t(x_t, a)$.
- Construct inverse-gap-weighted prob. mass

SquareCB (Foster et al. 2020)

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathcal{A}} \hat{f}_t(x_t, a)$.
- Construct inverse-gap-weighted prob. mass

$$p_t(a) = \frac{1}{|\mathscr{A}| + \gamma \cdot \left(\hat{f}_t(x_t, a) - \hat{f}_t(x_t, \hat{a}_t)\right)}$$

SquareCB (Foster et al. 2020)

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathcal{A}} \hat{f}_t(x_t, a)$.
- Construct inverse-gap-weighted prob. mass

$$p_t(a) = \frac{1}{|\mathscr{A}| + \gamma \cdot \left(\hat{f}_t(x_t, a) - \hat{f}_t(x_t, \hat{a}_t)\right)}$$

• Sample action
$$a_t \sim p_t + (1 - p_t(\mathscr{A})) \cdot \mathbb{I}_{\hat{a}_t}$$

SquareCB (Foster et al. 2020)

At each round t = 1, ..., T:

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathcal{A}} \hat{f}_t(x_t, a)$.
- Construct inverse-gap-weighted prob. mass

$$p_t(a) = \frac{1}{|\mathscr{A}| + \gamma \cdot \left(\hat{f}_t(x_t, a) - \hat{f}_t(x_t, \hat{a}_t)\right)}$$

• Sample action
$$a_t \sim p_t + (1 - p_t(\mathscr{A})) \cdot \mathbb{I}_{\widehat{a}_t}$$
.

• Observe loss $\ell_t(a_t)$ and update regression oracle.

SquareCB (Foster et al. 2020)

At each round t = 1, ..., T:

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathcal{A}} \hat{f}_t(x_t, a)$.
- Construct inverse-gap-weighted RN derivative $\frac{dp_t}{d\mu}(a) = \frac{|\mathcal{A}|}{|\mathcal{A}| + \gamma \cdot (\hat{f}_t(x_t, a) - \hat{f}_t(x_t, \hat{a}_t))}.$

• Sample action
$$a_t \sim p_t + (1 - p_t(\mathscr{A})) \cdot \mathbb{I}_{\hat{a}_t}$$
.

• Observe loss $\ell_t(a_t)$ and update regression oracle.

SmoothIGW for large action spaces

SmoothIGW

At each round t = 1, ..., T:

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathcal{A}} \hat{f}_t(x_t, a)$.
- Construct inverse-gap-weighted RN derivative $\frac{dp_t}{d\mu}(a) = \frac{1/h}{1/h + \gamma \cdot (\hat{f}_t(x_t, a) - \hat{f}_t(x_t, \hat{a}_t))}.$

• Sample action
$$a_t \sim p_t + (1 - p_t(\mathscr{A})) \cdot \mathbb{I}_{\hat{a}_t}$$
.

• Observe loss $\ell_t(a_t)$ and update regression oracle.

SmoothIGW for large action spaces

SmoothIGW

At each round t = 1, ..., T:

- Obtain x_t from nature and \hat{f}_t from regression oracle.
- Compute greedy action $\hat{a}_t := \arg \min_{a \in \mathcal{A}} \hat{f}_t(x_t, a)$.
- Construct inverse-gap-weighted RN derivative $\frac{dp_t}{d\mu}(a) = \frac{1/h}{1/h + \gamma \cdot (\hat{f}_t(x_t, a) - \hat{f}_t(x_t, \hat{a}_t))}.$

• Sample action
$$a_t \sim p_t + (1 - p_t(\mathscr{A})) \cdot \mathbb{I}_{\hat{a}_t}$$
.

• Observe loss $\ell_t(a_t)$ and update regression oracle.

Efficient rejection sampling

- Sample $\check{a}_t \sim \mu$ from base measure μ w/ sampling oracle.
- Sample *Z* from a Bernoulli dist. with mean $dp_t/d\mu(\check{a}_t)$.
- Play \check{a}_t if Z = 1; play \hat{a}_t otherwise.

Theorem

Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathcal{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

Theorem Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathscr{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

• An efficient ALG that works in large/continuous action spaces:

Theorem Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathscr{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

- An efficient ALG that works in large/continuous action spaces:
 - No structural assumptions on the model class.

Theorem Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathscr{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

- An efficient ALG that works in large/continuous action spaces:
 - No structural assumptions on the model class.
 - O(1/h) serves as the effective number of actions.

Theorem Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathcal{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

- An efficient ALG that works in large/continuous action spaces:
 - No structural assumptions on the model class.
 - O(1/h) serves as the effective number of actions.
- Recover minimax guarantees under standard regret:

Theorem Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathscr{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

- An efficient ALG that works in large/continuous action spaces:
 - No structural assumptions on the model class.
 - O(1/h) serves as the effective number of actions.
- Recover minimax guarantees under standard regret:
 - Discrete case w/ finite actions: Take $h = 1/|\mathscr{A}|$ leads to

Theorem Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathscr{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

- An efficient ALG that works in large/continuous action spaces:
 - No structural assumptions on the model class.
 - O(1/h) serves as the effective number of actions.
- Recover minimax guarantees under standard regret:
 - Discrete case w/ finite actions: Take $h = 1/|\mathscr{A}|$ leads to

 $\mathsf{Reg}_{\mathsf{CB}}(T) = \Theta(\sqrt{|\mathscr{A}| T \log |\mathscr{F}|})$

Theorem

Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathcal{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

- An efficient ALG that works in large/continuous action spaces:
 - No structural assumptions on the model class.
 - O(1/h) serves as the effective number of actions.
- Recover minimax guarantees under standard regret:
 - Discrete case w/ finite actions: Take $h = 1/|\mathscr{A}|$ leads to

 $\mathsf{Reg}_{\mathsf{CB}}(T) = \Theta(\sqrt{|\,\mathscr{A}\,|\,T\log|\,\mathscr{F}\,|\,})$

• Continuous case under Hölder (Lipschitz) continuity w/ exponent α : Take $h = \tilde{O}(T^{-1/(2\alpha+1)})$ leads to

Theorem

Fix $h \in (0,1]$. SmoothIGW achieves $\sqrt{T/h \log |\mathcal{F}|}$ smooth regret, with per-round O(1) calls to the regression/sampling oracles.

- An efficient ALG that works in large/continuous action spaces:
 - No structural assumptions on the model class.
 - O(1/h) serves as the effective number of actions.
- Recover minimax guarantees under standard regret:
 - Discrete case w/ finite actions: Take $h = 1/|\mathscr{A}|$ leads to

 $\mathsf{Reg}_{\mathsf{CB}}(T) = \Theta(\sqrt{|\,\mathscr{A}\,|\,T\log|\,\mathscr{F}\,|\,})$

• Continuous case under Hölder (Lipschitz) continuity w/ exponent α : Take $h = \tilde{O}(T^{-1/(2\alpha+1)})$ leads to

 $\mathsf{Reg}_{\mathsf{CB}}(T) = \tilde{\Theta}(T^{(\alpha+1)/(2\alpha+1)})$

An adaptive algorithm

An adaptive algorithm

Corral-SmoothIGW

- Initialize $O(\log T)$ base SmoothIGW, each with smoothness level $h_b = 2^{-b}$, for $b = 1, ..., O(\log(T))$.
- Apply the Corral (Agarwal et al. 2017) master ALG to balance over these base ALGs.

An adaptive algorithm

Corral-SmoothIGW

- Initialize $O(\log T)$ base SmoothIGW, each with smoothness level $h_b = 2^{-b}$, for $b = 1, ..., O(\log(T))$.
- Apply the Corral (Agarwal et al. 2017) master ALG to balance over these base ALGs.

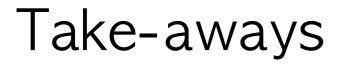
- Inherit the computational efficiency of SmoothIGW up to $O(\log(T))$.
- Recover many known Pareto frontiers under standard regret:
 - bandits with unknown number of multiple best arms (ZN '20).
 - Hölder bandits with unknown smoothness parameter (Hadiji '19).

Empirical evaluations

Replicate the experiment setups from Majzoubi et al. 2020 on 5 OpenML regression datasets. CATS is the ALG proposed in Majzoubi et al. 2020.

Table 1. Average progressive loss, scaled by 1000, on continuous action contextual bandit datasets. 95% CIs reported.

	CATS	Ours (Linear)	Ours (RFF)
Сри	[55, 57]	[40.6, 40.7]	$[{f 38.6},{f 38.7}]$
Fri	[183, 187]	$\left[161,163\right]$	$[{f 156},{f 157}]$
Price	[108, 110]	$\left[70.2,70.5\right]$	$[{f 66.1},{f 66.3}]$
Wis	[172, 174]	$\left[138,139\right]$	$[{f 136.2}, {f 136.6}]$
Zur	[24, 26]	$\left[24.3, 24.4\right]$	$\left[25.4, 25.5\right]$



Smooth regret is NOT a compromise

Facilitate the design of efficient ALGs