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» e.g. f(;0) could be the N(x,X) density with parameter 6 = (1, ) € © CR? x S¢ .

» Given an integer K > 1, assume
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» Mixing Proportions: 0 < 7rk <1, Zwk = 1.
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What is the risk of @n?
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» To quantify the risk of @n we require a loss function on Ok.

» Nguyen'13 proposed to use the r-Wasserstein distances (r > 1):

Wi(G.G) = int E[He - e'ur}, G.G' € Ok,
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» Slower pointwise rates hold for location-scale Gaussian mixtures (Ho & Nguyen'16).

» Uniform rate for strongly identifiable families F:

N 1
sup }E{H 2(Gp, G(,)} <n dK-2 (Heinrich & Kahn’18)
GoeOk

Our Contribution: In each of these settings, the Wasserstein distance can be replaced
by a stronger loss function which implies faster convergence rates for the atoms of G,,.
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» Voronoi Cells:

V= {3516 — o0l < 1165 — o7 | ve # i}

» Rate Interpretation: For all k£, and j € Vi,

Elld; — 00 Sn”7, or Elf;] <Sn”

MI»—A

o Atoms 0, of G, #Atoms 09 of Go. » Key Observation: This rate is loose for all k
such that |V}| = 1.
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(2) (Slow Rate) For all k such that |V} > 1, and j € V, it either holds that

1

EHéj - 912” SGO n 4, or E[ﬁj] SGO no2.

Al

» In contrast, past work only implied option (2) for all k.
» We prove this by introducing a new loss function D which satisfies D 2> W5 and
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A Peak at our Refinements for Location-Scale Gaussian Mixtures
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Past work painted an overly pessimistic view of parameter estimation in mixtures.

W, is only able to quantify the worst-case convergence rate among the atoms of @n
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Our divergences reveal the heterogeneity of convergence rates among these atoms.

v

Many open questions (EM algorithm, method of moments, etc.).

Thank You



