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Finite Mixture Models

I Let F = {f(·; θ) : θ ∈ Θ} be a parameteric density family with parameter space Θ.

I e.g. f(·; θ) could be the N(µ,Σ) density with parameter θ = (µ,Σ) ∈ Θ ⊆ Rd × Sd++.

I Given an integer K ≥ 1, assume

X1, . . . , Xn
i.i.d.∼ pG0(x) =

K∑
k=1

π0
kf(x; θ0

k)

I Mixing Proportions: 0 < π0
k ≤ 1,

K∑
k=1

π0
k = 1.

I Atoms: θ0k ∈ Θ, possibly overlapping.

I Mixing Measure:

G0 =

K∑
k=1

π0
kδθ0k
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Maximum Likelihood Estimation (MLE) in Finite Mixtures

Let OK denote the set of mixing measures with at most K components, and define

Ĝn =

K∑
j=1

π̂jδθ̂j = argmax
G∈OK

n∑
i=1

log pG(Xi).

What is the risk of Ĝn?



Maximum Likelihood Estimation (MLE) in Finite Mixtures

Let OK denote the set of mixing measures with at most K components, and define
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The Wasserstein Distances

I To quantify the risk of Ĝn, we require a loss function on OK .

I Nguyen’13 proposed to use the r-Wasserstein distances (r ≥ 1):

W r
r (G,G′) = inf

θ,θ′

θ∼G
θ′∼G′

E
[
‖θ − θ′‖r

]
, G,G′ ∈ OK ,
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State of the Art

I Pointwise convergence rate for “strongly identifiable” families F :

E
[
W2(Ĝn, G0)

]
.G0 n

− 1
4 (Chen’95, Ho & Nguyen’16)

I Slower pointwise rates hold for location-scale Gaussian mixtures (Ho & Nguyen’16).

I Uniform rate for strongly identifiable families F :

sup
G0∈OK

E
[
W1(Ĝn, G0)

]
. n−

1
4K−2 (Heinrich & Kahn’18)

Our Contribution: In each of these settings, the Wasserstein distance can be replaced
by a stronger loss function which implies faster convergence rates for the atoms of Ĝn.
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Interpreting Convergence in Wasserstein Distance

θ0
1

• Atoms θ̂j of Ĝn �Atoms θ0k of G0.

E
[
W2(Ĝn, G0)

]
.G0 n

− 1
4

I Voronoi Cells:

V̂k =
{
j :
∥∥θ̂j − θ0

k

∥∥ < ∥∥θ̂j − θ0
l

∥∥, ∀l 6= k
}

I Rate Interpretation: For all k, and j ∈ V̂k,

E‖θ̂j − θ0
k‖ . n−

1
4 , or E[π̂j ] . n

− 1
2 .

Key Observation: This rate is loose for all k
such that |V̂k| = 1.
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• Atoms θ̂j of Ĝn �Atoms θ0k of G0.

E
[
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Main Result: Refined Convergence Rate of the MLE

Theorem (Informal). Assume strong identifiability and mild regularity conditions.

(1) (Fast Rate) For all k such that |V̂k| = 1, and j ∈ V̂k, it holds that

E‖θ̂j − θ0
k‖ .G0 n

− 1
2 .

(2) (Slow Rate) For all k such that |V̂k| > 1, and j ∈ V̂k, it either holds that

E‖θ̂j − θ0
k‖ .G0 n

− 1
4 , or E[π̂j ] .G0 n

− 1
2 .

I In contrast, past work only implied option (2) for all k.

I We prove this by introducing a new loss function D which satisfies D &W2 and

E
[
D(Ĝn, G0)

]
.G0 n

− 1
4 .
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A Peak at our Refinements for Location-Scale Gaussian Mixtures

V̂1
V̂2

n−
1
8

n−
1
2

n−
1
12

• Atoms θ̂j =

(
µ̂j
σ̂j

)
of Ĝn �Atoms θ0k =

(
µ0
k

σ0
k

)
of G0.



Summary and Discussion

I Past work painted an overly pessimistic view of parameter estimation in mixtures.

I Wr is only able to quantify the worst-case convergence rate among the atoms of Ĝn.

I Our divergences reveal the heterogeneity of convergence rates among these atoms.

I Many open questions (EM algorithm, method of moments, etc.).

Thank You



Summary and Discussion

I Past work painted an overly pessimistic view of parameter estimation in mixtures.

I Wr is only able to quantify the worst-case convergence rate among the atoms of Ĝn.
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