Refined Convergence Rates for Maximum Likelihood Estimation under Finite Mixture Models

Tudor Manole
Department of Statistics and Data Science
Carnegie Mellon University

Joint work with: Nhat Ho (University of Texas, Austin)

Finite Mixture Models

- Let $\mathcal{F}=\{f(\cdot ; \theta): \theta \in \Theta\}$ be a parameteric density family with parameter space Θ.

Finite Mixture Models

- Let $\mathcal{F}=\{f(\cdot ; \theta): \theta \in \Theta\}$ be a parameteric density family with parameter space Θ.
- e.g. $f(\cdot ; \theta)$ could be the $N(\mu, \Sigma)$ density with parameter $\theta=(\mu, \Sigma) \in \Theta \subseteq \mathbb{R}^{d} \times \mathbb{S}_{++}^{d}$.

Finite Mixture Models

- Let $\mathcal{F}=\{f(\cdot ; \theta): \theta \in \Theta\}$ be a parameteric density family with parameter space Θ.
- e.g. $f(\cdot ; \theta)$ could be the $N(\mu, \Sigma)$ density with parameter $\theta=(\mu, \Sigma) \in \Theta \subseteq \mathbb{R}^{d} \times \mathbb{S}_{++}^{d}$.
- Given an integer $K \geq 1$, assume

$$
X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} p_{G_{0}}(x)=\sum_{k=1}^{K} \pi_{k}^{0} f\left(x ; \theta_{k}^{0}\right)
$$

Finite Mixture Models

- Let $\mathcal{F}=\{f(\cdot ; \theta): \theta \in \Theta\}$ be a parameteric density family with parameter space Θ.
- e.g. $f(\cdot ; \theta)$ could be the $N(\mu, \Sigma)$ density with parameter $\theta=(\mu, \Sigma) \in \Theta \subseteq \mathbb{R}^{d} \times \mathbb{S}_{++}^{d}$.
- Given an integer $K \geq 1$, assume

$$
X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} p_{G_{0}}(x)=\sum_{k=1}^{K} \pi_{k}^{0} f\left(x ; \theta_{k}^{0}\right)
$$

- Mixing Proportions: $0<\pi_{k}^{0} \leq 1, \sum_{k=1}^{K} \pi_{k}^{0}=1$.

Finite Mixture Models

- Let $\mathcal{F}=\{f(\cdot ; \theta): \theta \in \Theta\}$ be a parameteric density family with parameter space Θ.
- e.g. $f(\cdot ; \theta)$ could be the $N(\mu, \Sigma)$ density with parameter $\theta=(\mu, \Sigma) \in \Theta \subseteq \mathbb{R}^{d} \times \mathbb{S}_{++}^{d}$.
- Given an integer $K \geq 1$, assume

$$
X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} p_{G_{0}}(x)=\sum_{k=1}^{K} \pi_{k}^{0} f\left(x ; \theta_{k}^{0}\right)
$$

- Mixing Proportions: $0<\pi_{k}^{0} \leq 1, \sum_{k=1}^{K} \pi_{k}^{0}=1$.
- Atoms: $\theta_{k}^{0} \in \Theta$, possibly overlapping.

Finite Mixture Models

- Let $\mathcal{F}=\{f(\cdot ; \theta): \theta \in \Theta\}$ be a parameteric density family with parameter space Θ.
- e.g. $f(\cdot ; \theta)$ could be the $N(\mu, \Sigma)$ density with parameter $\theta=(\mu, \Sigma) \in \Theta \subseteq \mathbb{R}^{d} \times \mathbb{S}_{++}^{d}$.
- Given an integer $K \geq 1$, assume

$$
X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} p_{G_{0}}(x)=\sum_{k=1}^{K} \pi_{k}^{0} f\left(x ; \theta_{k}^{0}\right)=\int_{\Theta} f(x ; \theta) d G_{0}(\theta)
$$

- Mixing Proportions: $0<\pi_{k}^{0} \leq 1, \sum_{k=1}^{K} \pi_{k}^{0}=1$.
- Atoms: $\theta_{k}^{0} \in \Theta$, possibly overlapping.
- Mixing Measure:

$$
G_{0}=\sum_{k=1}^{K} \pi_{k}^{0} \delta_{\theta_{k}^{0}}
$$

Maximum Likelihood Estimation (MLE) in Finite Mixtures

Let \mathcal{O}_{K} denote the set of mixing measures with at most K components, and define

$$
\widehat{G}_{n}=\sum_{j=1}^{K} \hat{\pi}_{j} \delta_{\hat{\theta}_{j}}=\underset{G \in \mathcal{O}_{K}}{\operatorname{argmax}} \sum_{i=1}^{n} \log p_{G}\left(X_{i}\right) .
$$

Maximum Likelihood Estimation (MLE) in Finite Mixtures

Let \mathcal{O}_{K} denote the set of mixing measures with at most K components, and define

$$
\widehat{G}_{n}=\sum_{j=1}^{K} \hat{\pi}_{j} \delta_{\hat{\theta}_{j}}=\underset{G \in \mathcal{O}_{K}}{\operatorname{argmax}} \sum_{i=1}^{n} \log p_{G}\left(X_{i}\right) .
$$

$$
\text { What is the risk of } \widehat{G}_{n} \text { ? }
$$

The Wasserstein Distances

- To quantify the risk of \widehat{G}_{n}, we require a loss function on \mathcal{O}_{K}.

The Wasserstein Distances

- To quantify the risk of \widehat{G}_{n}, we require a loss function on \mathcal{O}_{K}.
- Nguyen'13 proposed to use the r-Wasserstein distances $(r \geq 1)$:

$$
W_{r}^{r}\left(G, G^{\prime}\right)=\inf _{\substack{\theta, \theta^{\prime} \\ \theta \sim G \\ \theta^{\prime} \sim G^{\prime}}} \mathbb{E}\left[\left\|\theta-\theta^{\prime}\right\|^{r}\right], \quad G, G^{\prime} \in \mathcal{O}_{K}
$$

State of the Art

- Pointwise convergence rate for "strongly identifiable" families \mathcal{F} :

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}}
$$

(Chen'95, Ho \& Nguyen'16)

State of the Art

- Pointwise convergence rate for "strongly identifiable" families \mathcal{F} :

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}}
$$

(Chen'95, Ho \& Nguyen'16)

- Slower pointwise rates hold for location-scale Gaussian mixtures (Ho \& Nguyen'16).

State of the Art

- Pointwise convergence rate for "strongly identifiable" families \mathcal{F} :

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}}
$$

(Chen'95, Ho \& Nguyen'16)

- Slower pointwise rates hold for location-scale Gaussian mixtures (Ho \& Nguyen'16).
- Uniform rate for strongly identifiable families \mathcal{F} :

$$
\sup _{G_{0} \in \mathcal{O}_{K}} \mathbb{E}\left[W_{1}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim n^{-\frac{1}{4 K-2}}
$$

State of the Art

- Pointwise convergence rate for "strongly identifiable" families \mathcal{F} :

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}} \quad \text { (Chen'95, Ho \& Nguyen'16) }
$$

- Slower pointwise rates hold for location-scale Gaussian mixtures (Ho \& Nguyen'16).
- Uniform rate for strongly identifiable families \mathcal{F} :

$$
\sup _{G_{0} \in \mathcal{O}_{K}} \mathbb{E}\left[W_{1}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim n^{-\frac{1}{4 K-2}}
$$

Our Contribution: In each of these settings, the Wasserstein distance can be replaced by a stronger loss function which implies faster convergence rates for the atoms of \widehat{G}_{n}.

State of the Art

- Pointwise convergence rate for "strongly identifiable" families \mathcal{F} :

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}} \quad \text { (Chen'95, Ho \& Nguyen'16) }
$$

- Slower pointwise rates hold for location-scale Gaussian mixtures (Ho \& Nguyen'16).
- Uniform rate for strongly identifiable families \mathcal{F} :

$$
\sup _{G_{0} \in \mathcal{O}_{K}} \mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim n^{-\frac{1}{4 K-2}}
$$

(Heinrich \& Kahn'18)

Our Contribution: In each of these settings, the Wasserstein distance can be replaced by a stronger loss function which implies faster convergence rates for the atoms of \widehat{G}_{n}.

Interpreting Convergence in Wasserstein Distance

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}}
$$

$$
\forall \theta_{1}^{0}
$$

- Atoms $\hat{\theta}_{j}$ of $\widehat{G}_{n} \diamond$ Atoms θ_{k}^{0} of G_{0}.

Interpreting Convergence in Wasserstein Distance

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim_{G_{0}} n^{-\frac{1}{4}}
$$

- Atoms $\hat{\theta}_{j}$ of $\widehat{G}_{n} \quad$ Atoms θ_{k}^{0} of G_{0}.

Interpreting Convergence in Wasserstein Distance

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim_{G_{0}} n^{-\frac{1}{4}}
$$

- Atoms $\hat{\theta}_{j}$ of $\widehat{G}_{n} \diamond$ Atoms θ_{k}^{0} of G_{0}.

Interpreting Convergence in Wasserstein Distance

- Voronoi Cells:

$$
\hat{V}_{k}=\left\{j:\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\|<\left\|\hat{\theta}_{j}-\theta_{l}^{0}\right\|, \forall l \neq k\right\}
$$

- Atoms $\hat{\theta}_{j}$ of $\widehat{G}_{n} \diamond$ Atoms θ_{k}^{0} of G_{0}.

Interpreting Convergence in Wasserstein Distance

- Voronoi Cells:

$$
\hat{V}_{k}=\left\{j:\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\|<\left\|\hat{\theta}_{j}-\theta_{l}^{0}\right\|, \forall l \neq k\right\}
$$

- Rate Interpretation: For all k, and $j \in \hat{V}_{k}$,

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim n^{-\frac{1}{4}}, \quad \text { or } \quad \mathbb{E}\left[\hat{\pi}_{j}\right] \lesssim n^{-\frac{1}{2}} .
$$

- Atoms $\hat{\theta}_{j}$ of $\widehat{G}_{n} \diamond$ Atoms θ_{k}^{0} of G_{0}.

Interpreting Convergence in Wasserstein Distance

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}}
$$

- Voronoi Cells:

$$
\hat{V}_{k}=\left\{j:\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\|<\left\|\hat{\theta}_{j}-\theta_{l}^{0}\right\|, \forall l \neq k\right\}
$$

- Rate Interpretation: For all k, and $j \in \hat{V}_{k}$,

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim n^{-\frac{1}{4}}, \quad \text { or } \quad \mathbb{E}\left[\hat{\pi}_{j}\right] \lesssim n^{-\frac{1}{2}} .
$$

- Atoms $\hat{\theta}_{j}$ of $\widehat{G}_{n} \diamond$ Atoms θ_{k}^{0} of G_{0}.

Interpreting Convergence in Wasserstein Distance

- Atoms $\hat{\theta}_{j}$ of $\widehat{G}_{n} \diamond$ Atoms θ_{k}^{0} of G_{0}.

$$
\mathbb{E}\left[W_{2}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}}
$$

- Voronoi Cells:

$$
\hat{V}_{k}=\left\{j:\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\|<\left\|\hat{\theta}_{j}-\theta_{l}^{0}\right\|, \forall l \neq k\right\}
$$

- Rate Interpretation: For all k, and $j \in \hat{V}_{k}$,

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim n^{-\frac{1}{4}}, \quad \text { or } \quad \mathbb{E}\left[\hat{\pi}_{j}\right] \lesssim n^{-\frac{1}{2}} .
$$

- Key Observation: This rate is loose for all k such that $\left|\hat{V}_{k}\right|=1$.

Main Result: Refined Convergence Rate of the MLE

Theorem (Informal). Assume strong identifiability and mild regularity conditions.
(1) (Fast Rate) For all k such that $\left|\hat{V}_{k}\right|=1$, and $j \in \hat{V}_{k}$, it holds that

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim G_{0} n^{-\frac{1}{2}} .
$$

Main Result: Refined Convergence Rate of the MLE

Theorem (Informal). Assume strong identifiability and mild regularity conditions.
(1) (Fast Rate) For all k such that $\left|\hat{V}_{k}\right|=1$, and $j \in \hat{V}_{k}$, it holds that

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim G_{0} n^{-\frac{1}{2}} .
$$

(2) (Slow Rate) For all k such that $\left|\hat{V}_{k}\right|>1$, and $j \in \hat{V}_{k}$, it either holds that

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim G_{0} n^{-\frac{1}{4}}, \quad \text { or } \mathbb{E}\left[\hat{\pi}_{j}\right] \lesssim G_{0} n^{-\frac{1}{2}} .
$$

Main Result: Refined Convergence Rate of the MLE

Theorem (Informal). Assume strong identifiability and mild regularity conditions.
(1) (Fast Rate) For all k such that $\left|\hat{V}_{k}\right|=1$, and $j \in \hat{V}_{k}$, it holds that

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim G_{0} n^{-\frac{1}{2}} .
$$

(2) (Slow Rate) For all k such that $\left|\hat{V}_{k}\right|>1$, and $j \in \hat{V}_{k}$, it either holds that

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim G_{0} n^{-\frac{1}{4}}, \quad \text { or } \mathbb{E}\left[\hat{\pi}_{j}\right] \lesssim G_{0} n^{-\frac{1}{2}} .
$$

- In contrast, past work only implied option (2) for all k.

Main Result: Refined Convergence Rate of the MLE

Theorem (Informal). Assume strong identifiability and mild regularity conditions.
(1) (Fast Rate) For all k such that $\left|\hat{V}_{k}\right|=1$, and $j \in \hat{V}_{k}$, it holds that

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim G_{0} n^{-\frac{1}{2}} .
$$

(2) (Slow Rate) For all k such that $\left|\hat{V}_{k}\right|>1$, and $j \in \hat{V}_{k}$, it either holds that

$$
\mathbb{E}\left\|\hat{\theta}_{j}-\theta_{k}^{0}\right\| \lesssim G_{0} n^{-\frac{1}{4}}, \quad \text { or } \mathbb{E}\left[\hat{\pi}_{j}\right] \lesssim G_{0} n^{-\frac{1}{2}}
$$

- In contrast, past work only implied option (2) for all k.
- We prove this by introducing a new loss function \mathcal{D} which satisfies $\mathcal{D} \gtrsim W_{2}$ and

$$
\mathbb{E}\left[\mathcal{D}\left(\widehat{G}_{n}, G_{0}\right)\right] \lesssim G_{0} n^{-\frac{1}{4}}
$$

A Peak at our Refinements for Location-Scale Gaussian Mixtures

- Atoms $\hat{\theta}_{j}=\binom{\hat{\mu}_{j}}{\hat{\sigma}_{j}}$ of $\widehat{G}_{n} \quad \Delta$ Atoms $\theta_{k}^{0}=\binom{\mu_{k}^{0}}{\sigma_{k}^{0}}$ of G_{0}.

Summary and Discussion

- Past work painted an overly pessimistic view of parameter estimation in mixtures.

Summary and Discussion

- Past work painted an overly pessimistic view of parameter estimation in mixtures.
- W_{r} is only able to quantify the worst-case convergence rate among the atoms of \widehat{G}_{n}.

Summary and Discussion

- Past work painted an overly pessimistic view of parameter estimation in mixtures.
- W_{r} is only able to quantify the worst-case convergence rate among the atoms of \widehat{G}_{n}.
- Our divergences reveal the heterogeneity of convergence rates among these atoms.

Summary and Discussion

- Past work painted an overly pessimistic view of parameter estimation in mixtures.
- W_{r} is only able to quantify the worst-case convergence rate among the atoms of \widehat{G}_{n}.
- Our divergences reveal the heterogeneity of convergence rates among these atoms.
- Many open questions (EM algorithm, method of moments, etc.).

Thank You

