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dense dynamics model
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only keep causal edges, robust to outliers, 
e.g., clock outliers won’t affect door A & B prediction

generalizes badly
due to spurious correlation
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S: state space (known, high-level variables are given)

We leave handling low-level, partially-observable state 

space (e.g., images) as future work.

A: action space (known)

P: transition probability (not known)

Problem Setup



Goals

1. Learn a causal dynamics model from transition 

data

are parents of     during the data generation 

process.
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2. Split state variables into three categories

Sc: space of controllable state variables

Sr: space of action-relevant state variables

Si: space of action-irrelevant state variables
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Goals

1. Learn a causal dynamics model from transition 

data

2. Split state variables into three categories

3. Derive a state abstraction by omitting action-

irrelevant state variables

4. Use the abstracted causal dynamics to learn 

(many) downstream tasks
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Bisimulation[1] : bisimulation considers two states the same                         if
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[1] Ravindran, B., 2004; Li, L., 2009

Related Work
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Compared to CDL,

● Bisimulation is reward-specific and thus applicable to limited tasks.

● Most bisimulation work still uses dense dynamics, leading to poor generalization.

bisimulation CDL

Related Work
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Method

So far, the key of CDL is to learn a causal dynamics model.



So far, the key of CDL is to learn a causal dynamics model.

Specifically, for each state variable    , how to determine if a 

state variable     is one of its parents?
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Method

Learn and predict                        &                                 using generative models, but 

there will be       models to train... 



Learning                        &                                 needs to train       models.

With a mask        and an element-wise maximum module, one network can represent all 

generative models in the form of                .
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After training, to represent the causal model                     , we can adjust the 

mask to select causal parents of     only.
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Causal Dynamics 
Learning 

(CDL)

Data collection policy

transition buffer 

Learn causal dynamics

Build the causal graph and state abstraction Learn downstream tasks with 
the abstracted causal dynamics
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Does each baseline learn a causal model?

MLP: multi-layer perceptron

[2] Wang et al., Neurips 2021. [3] Kipf et al., ICLR 2020

Experiments
Baselines



Synthesized environment 
– with different underlying graphs
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Chemical Environment[4]

[4] Ke et al., Neurips 2021.



Synthesized environment 
– with different underlying graphs
– as action changes the color of one node, colors of all its descendants will also 

change.
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Synthesized environment 
– with different underlying graphs
– as action changes the color of one node, colors of all its descendants will also 

change.

Action-irrelevant variables: positions sampled from N(0, 0.01).

26

Experiments
Chemical Environment[4]

[4] Ke et al., Neurips 2021.
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State Variables:
- end-effector (eef)
- gripper (grp)
- the movable object (mov)
- the unmovable object (unm)
- the randomly moving object (rand)
- non-interactable markers (mkr1-3)

Action dimensions:
- end-effector target
- gripper open/close
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Experiments
Manipulation Environment
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At the object level, the learned dependence is (subjectively) 
reasonable.

Results
Causal Graph Accuracy
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Results
Causal Graph Accuracy
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Results
Dynamics Generalization

Causal dynamics generalizes 

best in unseen states.
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Results
Task Generalization

Causal Dynamics Learning (Ours)

Regularization

Graph Neural Network

Modular

Monolithic

ID: in-distribution states

OOD: out-of-distribution states

Causal dynamics generalizes 

best in unseen states.



Scale to high-dimensional observations (e.g. images)?

- Learn disentangled representations, then learn dynamics in the representation 

space

Causal dependencies are learned globally only.

- Learning local independencies to further sparsify the dynamics.
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Limitations and Future Directions
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CDL’s state abstraction omits action-irrelevant

variables. 

What tasks can this state abstraction solve?

Tasks whose rewards are defined by 

controllable and action-relevant state variables

Tasks with rewards involving action-irrelevant

state variables

Solving any task (learning any reward) means no 

abstraction.
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Problem Setup
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Method

Key idea: determine if the causal edge                  exists with a conditional 

independence test.

Theorem 1 If                                   , then                 .

In other words, is      needed to predict        ?


