
Hierarchical Shrinkage: Improving 
the Accuracy and Interpretability 

of Tree-based Methods

Omer 
Ronen

Yan Shuo 
Tan

Chandan 
Singh

Abhineet 
Agarwal

Bin Yu



Decision tree algorithms
comprise two steps

Step 1: Grow the tree
X1> a

X2 > b



Decision tree algorithms
comprise two steps

Step 1: Grow the tree

Step 2: Impute node values using 
the mean response of the training 
data within each node

X1> a

X2 > b



Decision tree algorithms
comprise two steps

Step 1: Grow the tree

Step 2: Impute node values using 
the mean response of the training 
data within each node

X1> a

X2 > b

Different algorithms vary in this step



How to grow the tree: two strategies

Greedy algorithms
(using local criterion)

● Most popular: CART [Breiman, 
Friedman, Olshen, Stone (1984)]

● Many others: C4.5 [Quinlan (1993)], 
ID3 [Quinlan (1986)], GUIDE [Loh 

(2009)],...

Global optimization 
(of a loss function on space of trees)

● Dynamic programming: GOSDT 
[Lin, Hu, Rudin, Seltzer (2020)],...

● Mixed integer optimization: 
[Bertsimas, Dunn (2017)],...

Fundamental problem:
Trees can easily overfit to the training data
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Effect on toy examples
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How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before 
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N = 50

Old prediction 
=        +  (       -       )  +  (       -       )

New prediction under HS 
=        +  (       -       )  +  (       -       )

1 + λ/50 1 + λ/20

λ = hyperparameter to be tuned

Under the hood:
Connection to ridge regression
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Because HS is applied after decision tree is grown…

● Can be applied to any decision tree model

● Extremely fast and efficient

○ Does not need to refit the tree

○ Does not require access to training sample, only node values + sample sizes

○ Can be tuned using efficient leave-one-out-CV

● Can be used simultaneously with pruning or other types of regularization

● Can be applied to decision trees in an ensemble
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Results on real-world datasets



HS improves prediction accuracy of decision trees

Hierarchical shrinkage

1. Improves prediction accuracy (r2) on regression datasets

2. Improves prediction accuracy (AUROC) on classification datasets

3. Performs better than alternate shrinkage schemes

4. Improves prediction accuracy of random forests



1. Regression results: r2 vs no. of leaves

No. of leaves

Q. How much HS improve prediction accuracy for trees as we 
vary the level of model complexity?

For each dataset

● Apply HS to trees grown using CART and CART with 
cost-complexity pruning (CCP)

● Vary no. of leaves in each model via changing the 
stopping/pruning condition
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Performance gap is larger 
for smaller datasets

Sample size n



2. Classification results: AUROC vs no. of leaves
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2. Classification results: AUROC vs no. of leaves

● HS improves both tree models
● Performance gap is larger for deeper trees
● Performance gap is larger for smaller datasets



X2 > b

LBS X1> a

New prediction for leftmost leaf 
= 0.80 ⨉        + 0.20 ⨉        

3. An alternate shrinkage scheme: Leaf-based shrinkage

X2 > b

HS X1> a

New prediction for leftmost leaf 
= 0.80 ⨉        + 0.11 ⨉        + 0.09 ⨉

Used implicitly in XGBoost 
and Bayesian Additive 
Regression Trees (BART)
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4. Applying HS to random forest (hsRF)

● HS can be applied to individual trees in an RF to regularize it

● How are RFs regularized?

○ Trees in RF typically not regularized

○ Breiman’s insight: Randomness in RF acts as implicit regularization

● However, we show that HS improves RF performance significantly



4. Applying HS to random forest (hsRF)

We compare (classification) performance of hsRF to

● Vanilla RF (default hyperparameters from scikit-learn)
● RF regularized via choosing depth by CV
● RF regularized via choosing max_features / m_try 

(number of subsetted features per tree) by CV
● Bayesian Additive Regression Trees (BART)

For all methods (except BART), we plot how accuracy changes 
as we vary the no. of trees
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4. Applying HS to random forest (hsRF)

vanilla RF
hsRF

depth
max_features
BART

● hsRF performs better than other regularization schemes
● hsRF reaches peak performance with very few trees: Can 

compress models
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4. Applying HS to random forest (hsRF)

● hsRF doesn’t need to refit the RF when performing CV: 
faster than other methods

● Performance gap still appears at 500 trees



Summary of results (prediction accuracy)

Hierarchical shrinkage

1. Improves prediction accuracy (r2) on regression datasets

2. Improves prediction accuracy (AUROC) on classification datasets

3. Performs better than alternate shrinkage schemes

4. Improves prediction accuracy of random forests



HS improves interpretability of random forest (RF)

Hierarchical shrinkage

1. Simplifies decision boundaries

2. Makes SHAP values more clustered

3. Makes SHAP values more stable to dataset resampling



2. Refresher on SHAP [Lundberg, Lee (2017)]

● SHAP is a local feature importance score

● Usually summarized in a SHAP plot
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SHAP plot for 
breast-cancer dataset

Feature name

SHAP value for 
one sample
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2. HS makes SHAP values more clustered

How to interpret this?
● If SHAP values are clustered, then feature acts in a 

similar way for all examples in cluster
● I.e. the feature does not interact with other features
● HS regularizes spurious interactions in the model



Conclusion

● Hierarchical shrinkage regularizes decision trees by shrinking the value of 
each node to those of its ancestors

● Is extremely fast and can be applied to any decision tree model or tree 
ensemble

● Improves prediction accuracy for decision tree and random forest models

● Improves interpretability of random forest models


