Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-based Methods

Abhineet Agarwal

Yan Shuo Tan

Omer Ronen

Chandan Singh

Bin Yu

Decision tree algorithms comprise two steps

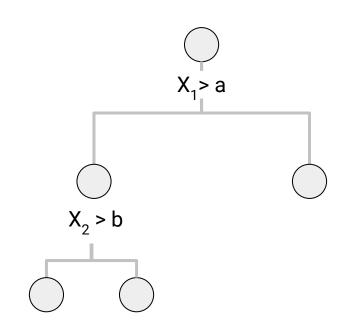
Step 1: Grow the tree



Decision tree algorithms comprise two steps

Step 1: Grow the tree

Step 2: Impute node values using the mean response of the training data within each node

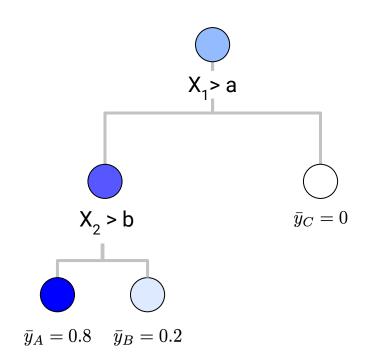


Decision tree algorithms comprise two steps

Step 1: Grow the tree

Different algorithms vary in this step

Step 2: Impute node values using the mean response of the training data within each node



How to grow the tree: two strategies

Greedy algorithms (using local criterion)

- Most popular: CART [Breiman, Friedman, Olshen, Stone (1984)]
- Many others: C4.5 [Quinlan (1993)],
 ID3 [Quinlan (1986)], GUIDE [Loh (2009)],...

Global optimization

(of a loss function on space of trees)

- Dynamic programming: GOSDT
 [Lin, Hu, Rudin, Seltzer (2020)],...
- Mixed integer optimization: [Bertsimas, Dunn (2017)],...

Fundamental problem:

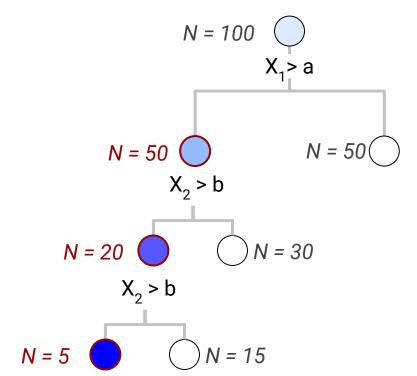
Trees can easily overfit to the training data

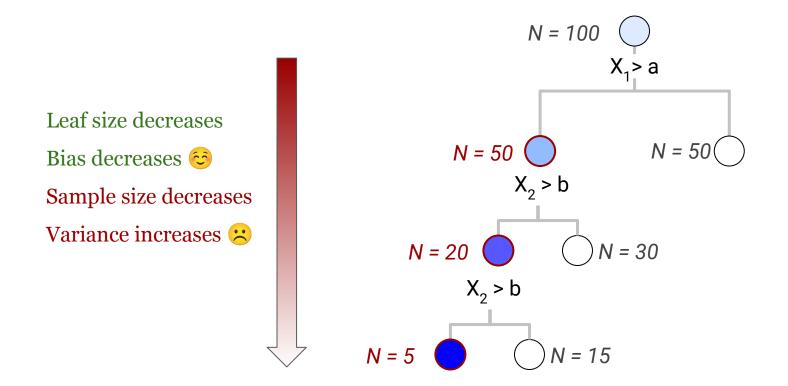
Leaf size decreases

Bias decreases 😌

Sample size decreases

Variance increases 🙁





Fundamental problem:

Trees can easily overfit to the training data

Current methods for preventing overfitting

Greedy algorithms

- Use early stopping condition
- Prune the tree after growing

All methods regularize the tree **structure** (step 1)

Global optimization

 Add a complexity penalty term to the loss function



Current methods for preventing overfitting

Greedy algorithms

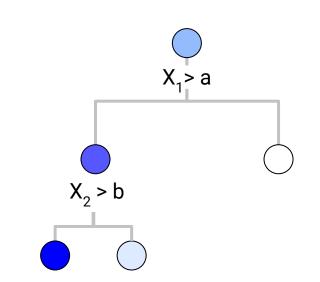
- Use early stopping condition
- Prune the tree after growing

All methods regularize the tree **structure** (step 1)

We propose regularizing the tree **values** (step 2)

Global optimization

 Add a complexity penalty term to the loss function



Current methods for preventing overfitting

Greedy algorithms

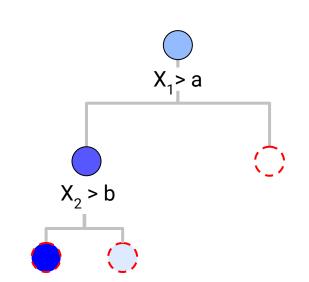
- Use early stopping condition
- Prune the tree after growing

All methods regularize the tree **structure** (step 1)

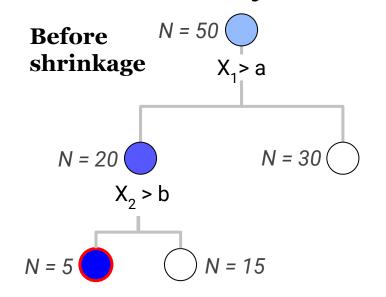
We propose regularizing the tree **values** (step 2)

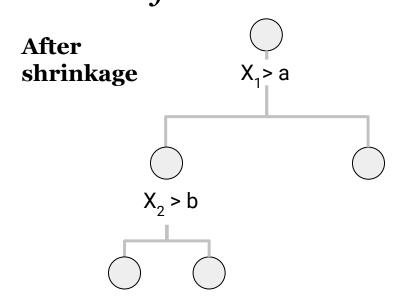
Global optimization

 Add a complexity penalty term to the loss function

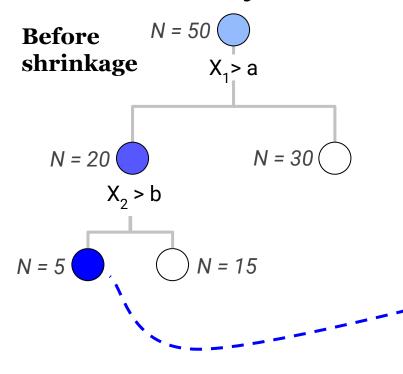


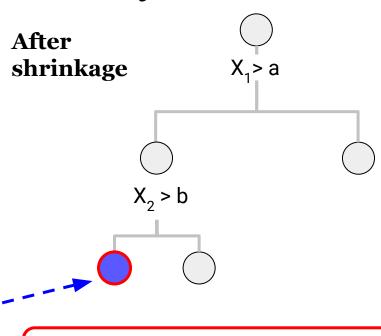
Introducing: Hierarchical Shrinkage (HS) Shrink the value of each node to those of its ancestors





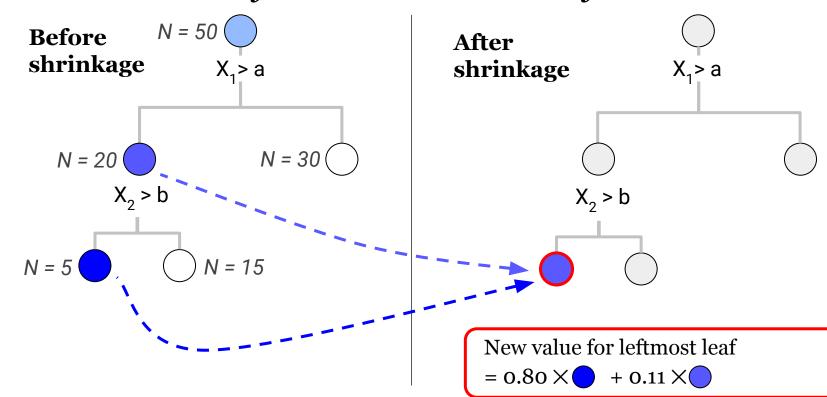
Shrink the value of each node to those of its ancestors



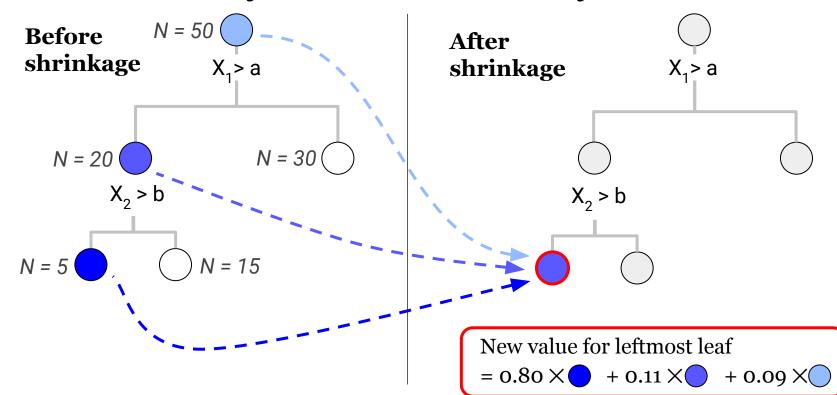


New value for leftmost leaf = 0.80 ×

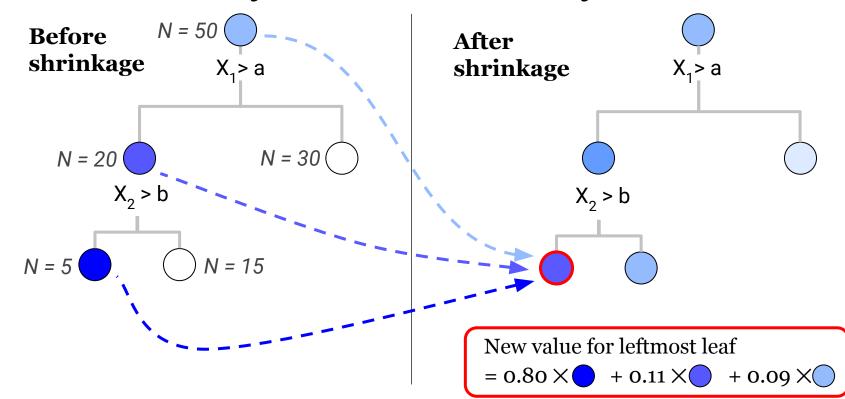
Shrink the value of each node to those of its ancestors



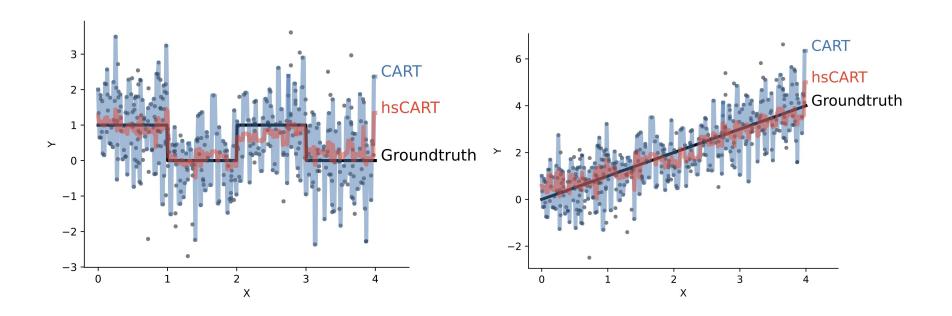
Shrink the value of each node to those of its ancestors



Shrink the value of each node to those of its ancestors

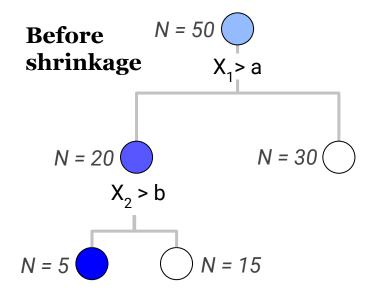


Effect on toy examples



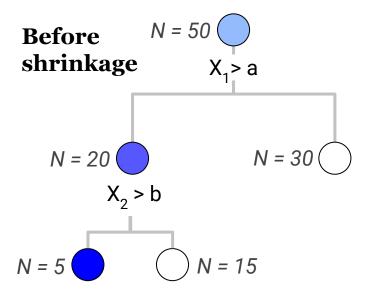
New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$

New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$



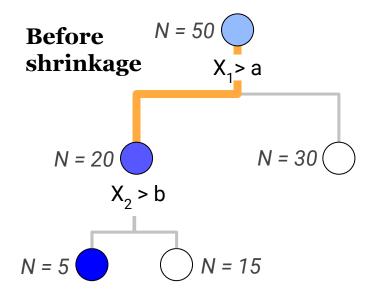
Old prediction •

New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$

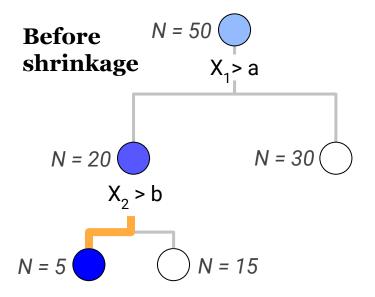


Old prediction

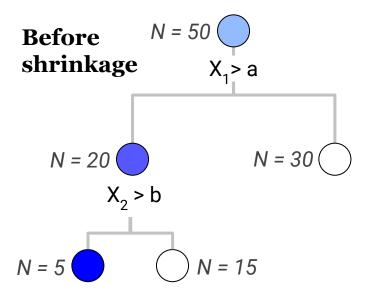
New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$



New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$



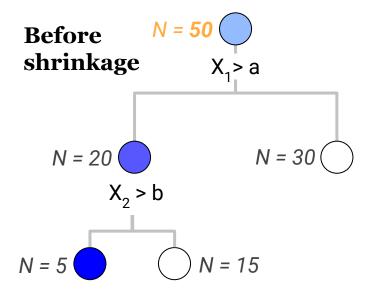
New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$



Old prediction •

New prediction under HS

New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$

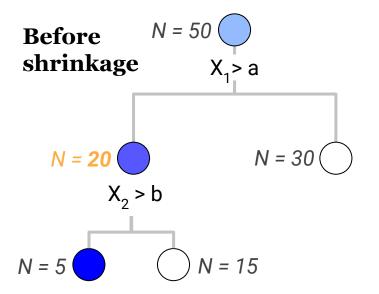


New prediction under HS

$$= \bigcirc + (\bigcirc - \bigcirc) + (\bigcirc - \bigcirc)$$

$$\frac{1 + \lambda/50}{1 + \lambda/50}$$

New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$

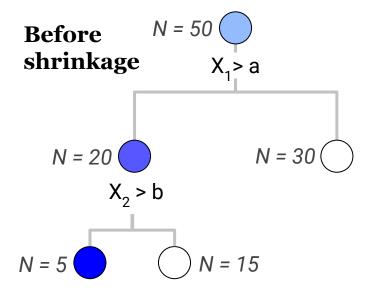


New prediction under HS

$$= \bigcirc + (\bigcirc - \bigcirc) + (\bigcirc - \bigcirc)$$

$$\frac{1 + \lambda/50}{1 + \lambda/20}$$

New value for leftmost leaf $= 0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$



Old prediction •

New prediction under HS

$$= \bigcirc + (\bigcirc - \bigcirc) + (\bigcirc - \bigcirc)$$

$$\frac{1 + \lambda/50}{1 + \lambda/20}$$

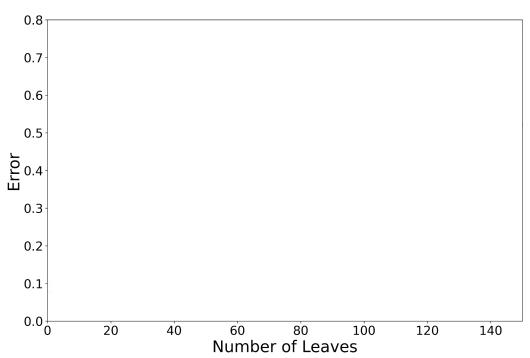
 λ = hyperparameter to be tuned

Under the hood:

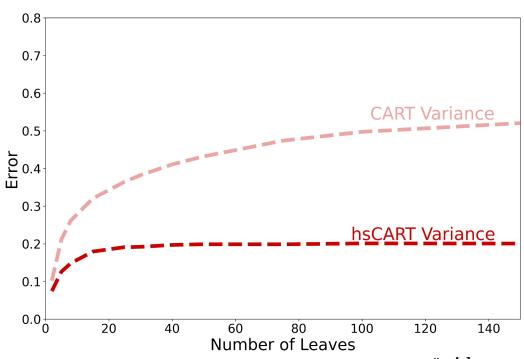
Connection to ridge regression

Because HS is applied after decision tree is grown...

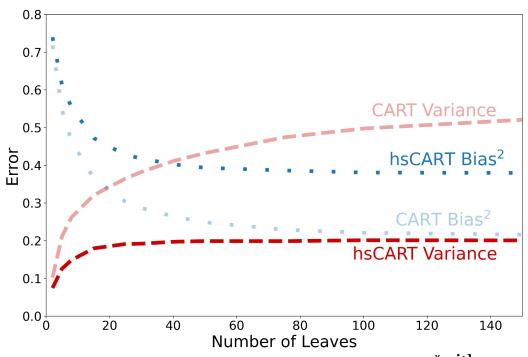
- Can be applied to any decision tree model
- Extremely fast and efficient
 - Does not need to refit the tree
 - Does not require access to training sample, only node values + sample sizes
 - Can be tuned using efficient leave-one-out-CV
- Can be used simultaneously with pruning or other types of regularization
- Can be applied to decision trees in an ensemble



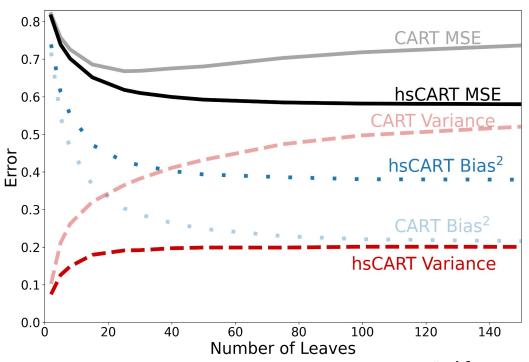
*with a sparse linear generative model



*with a sparse linear generative model



*with a sparse linear generative model



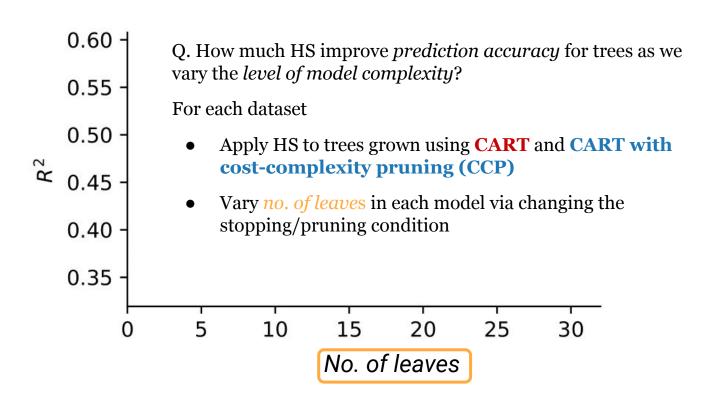
*with a sparse linear generative model

HS improves prediction accuracy of decision trees

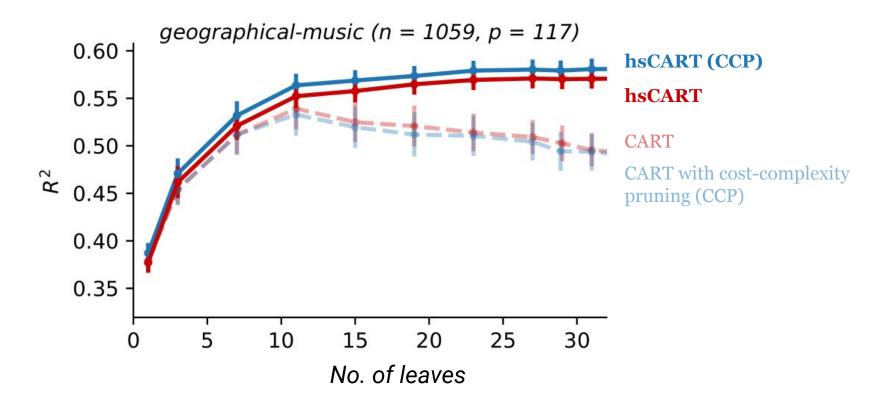
Hierarchical shrinkage

- 1. Improves prediction accuracy (r²) on regression datasets
- 2. Improves prediction accuracy (AUROC) on classification datasets
- 3. Performs better than alternate shrinkage schemes
- 4. Improves prediction accuracy of random forests

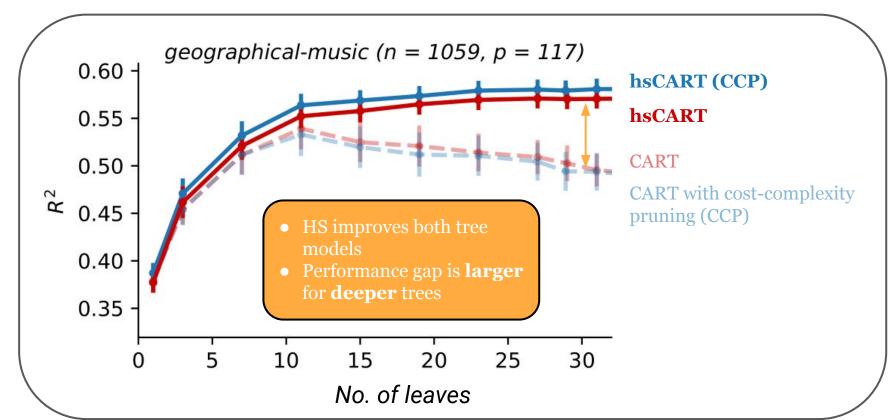
1. Regression results: r^2 vs no. of leaves

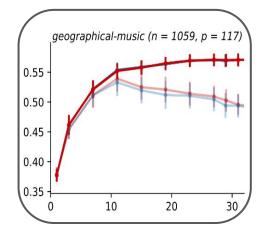


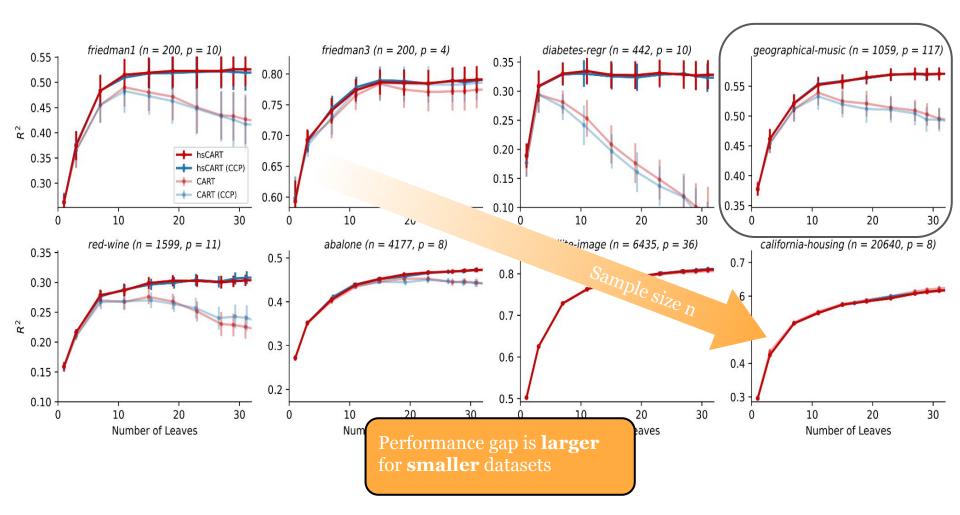
1. Regression results: r^2 vs no. of leaves



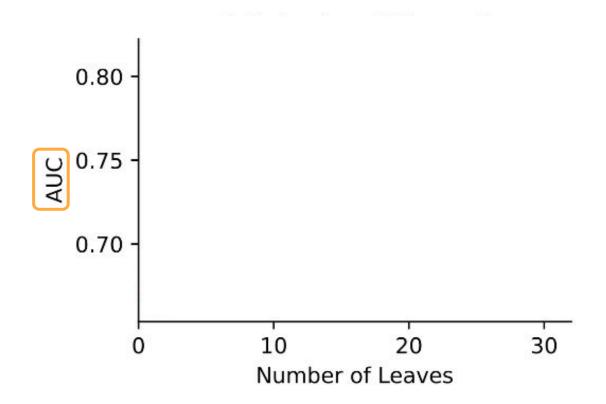
1. Regression results: r^2 vs no. of leaves



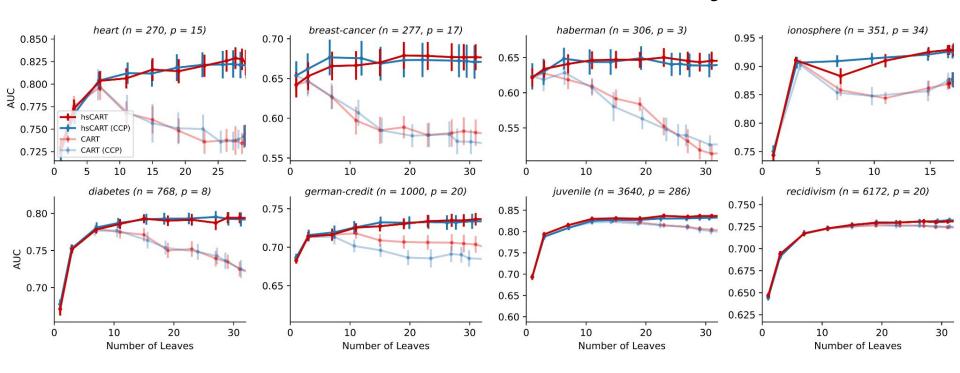




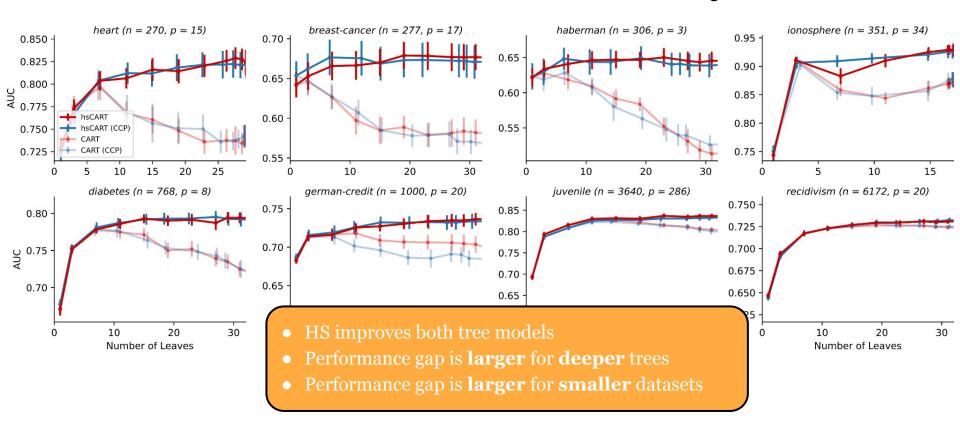
2. Classification results: *AUROC* vs no. of leaves



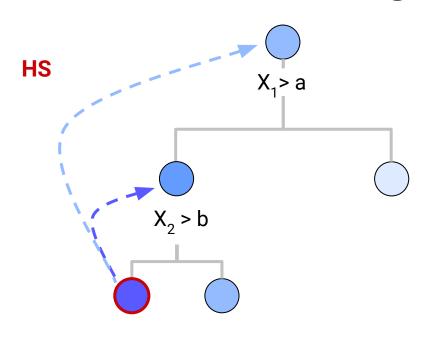
2. Classification results: *AUROC* vs no. of leaves



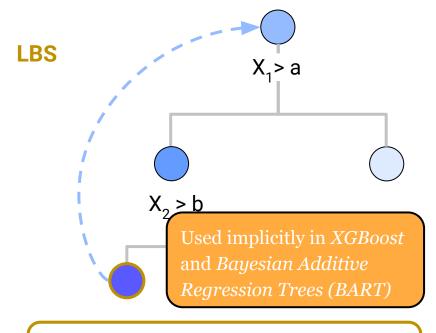
2. Classification results: *AUROC* vs no. of leaves



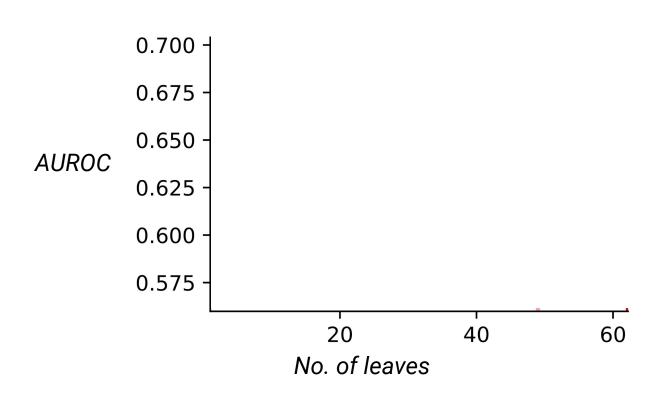
3. An alternate shrinkage scheme: Leaf-based shrinkage

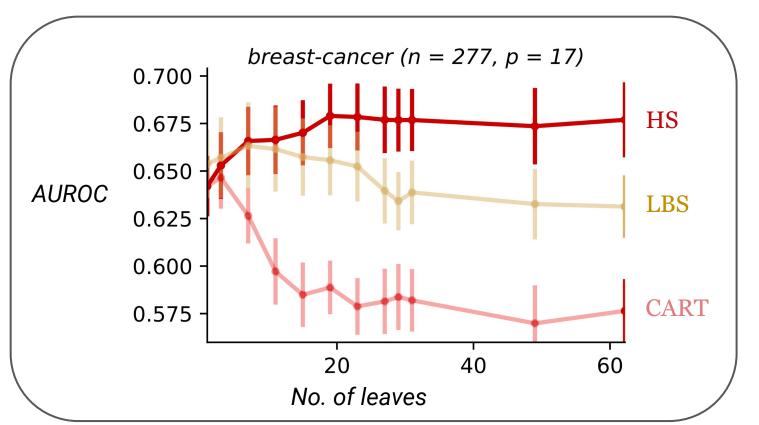


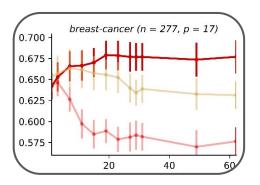
New prediction for leftmost leaf = $0.80 \times \bigcirc + 0.11 \times \bigcirc + 0.09 \times \bigcirc$

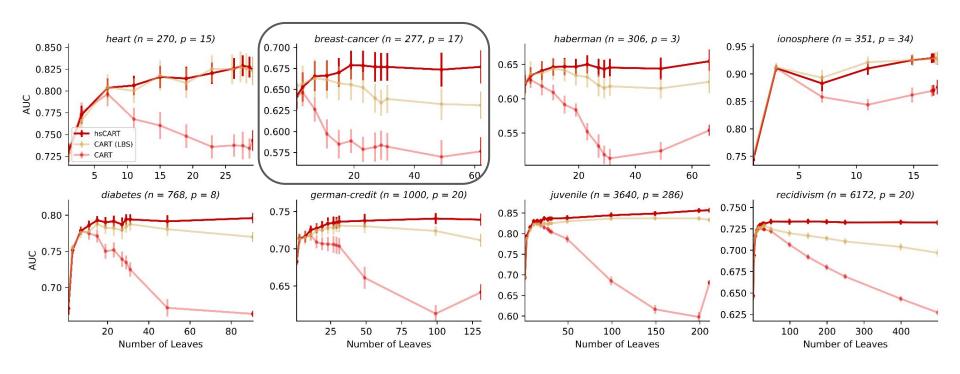


New prediction for leftmost leaf = $0.80 \times \bigcirc + 0.20 \times \bigcirc$

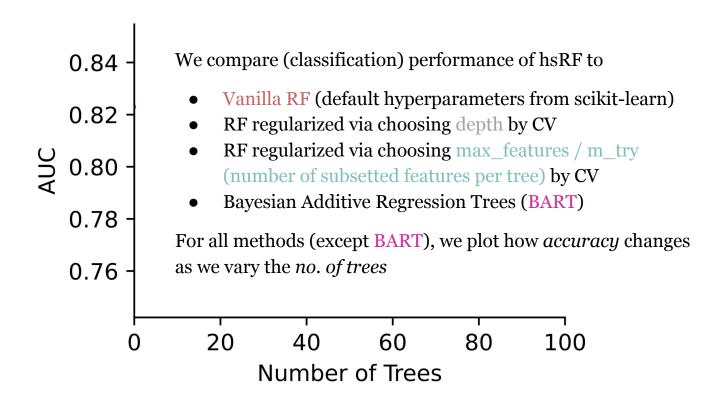


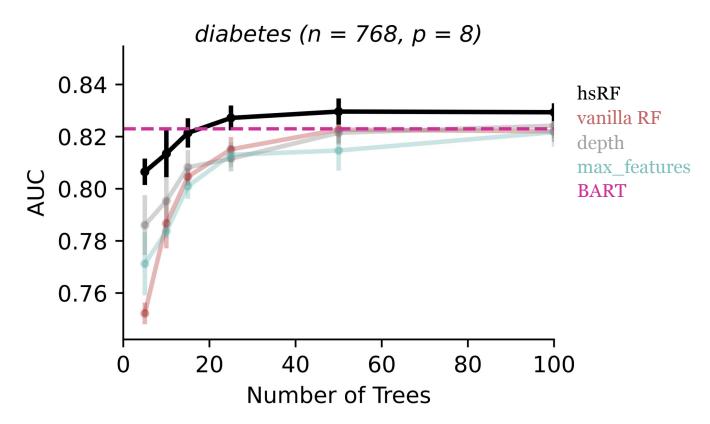


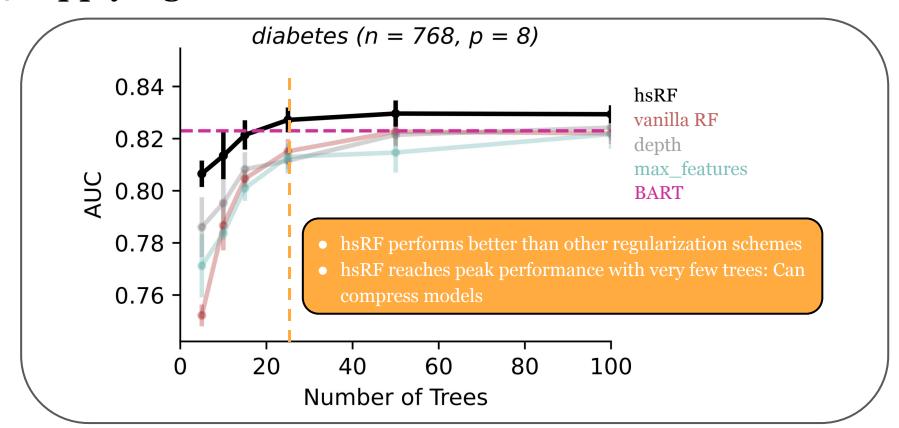


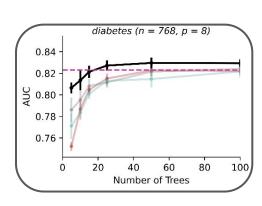


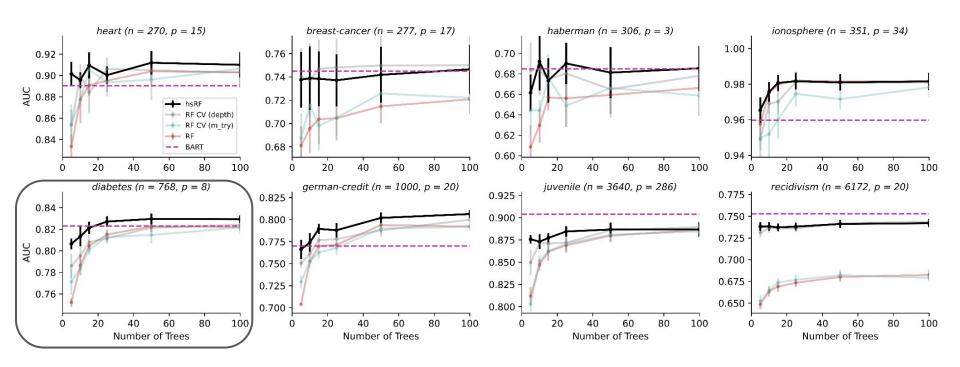
- HS can be applied to individual trees in an RF to regularize it
- How are RFs regularized?
 - Trees in RF typically not regularized
 - o Breiman's insight: Randomness in RF acts as *implicit* regularization
- However, we show that HS improves RF performance significantly

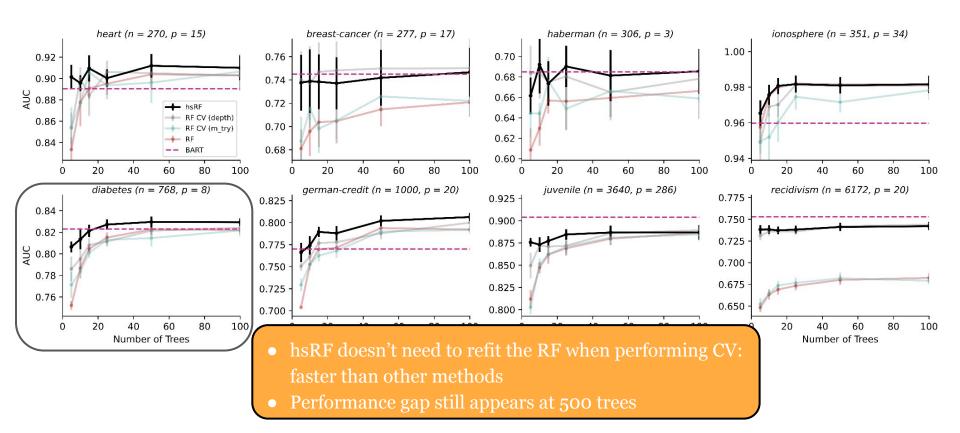












Summary of results (prediction accuracy)

Hierarchical shrinkage

- 1. Improves prediction accuracy (r²) on regression datasets
- 2. Improves prediction accuracy (AUROC) on classification datasets
- 3. Performs better than alternate shrinkage schemes
- 4. Improves prediction accuracy of random forests

HS improves interpretability of random forest (RF)

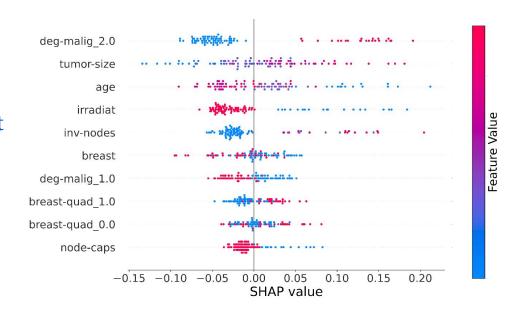
Hierarchical shrinkage

- 1. Simplifies decision boundaries
- 2. Makes SHAP values more clustered
- 3. Makes SHAP values more stable to dataset resampling

2. Refresher on SHAP [Lundberg, Lee (2017)]

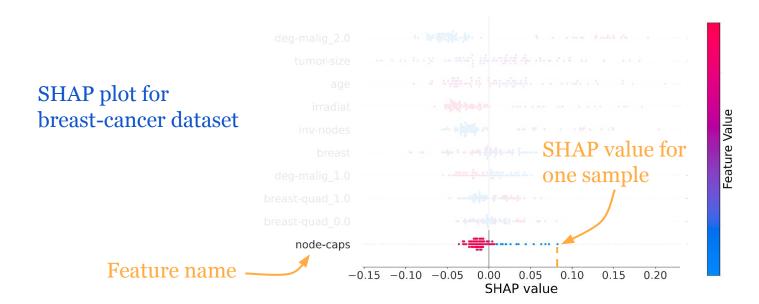
- SHAP is a local feature importance score
- Usually summarized in a SHAP plot

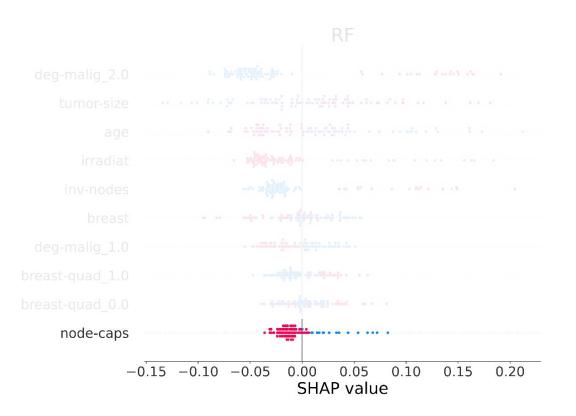
SHAP plot for breast-cancer dataset

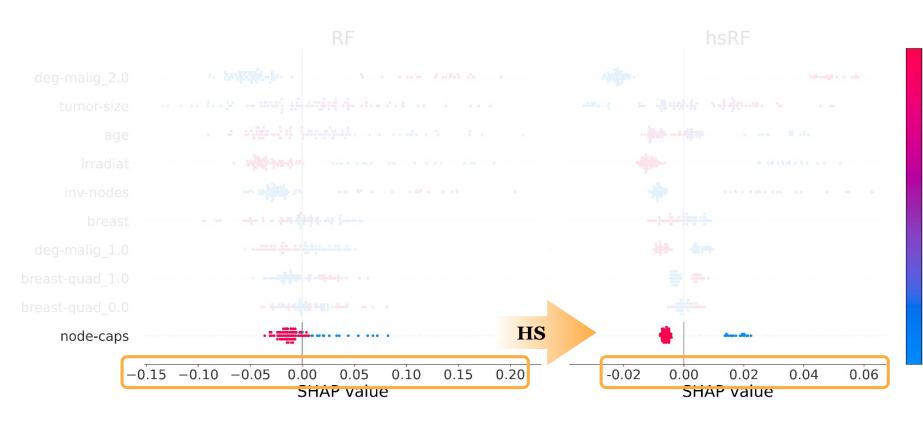


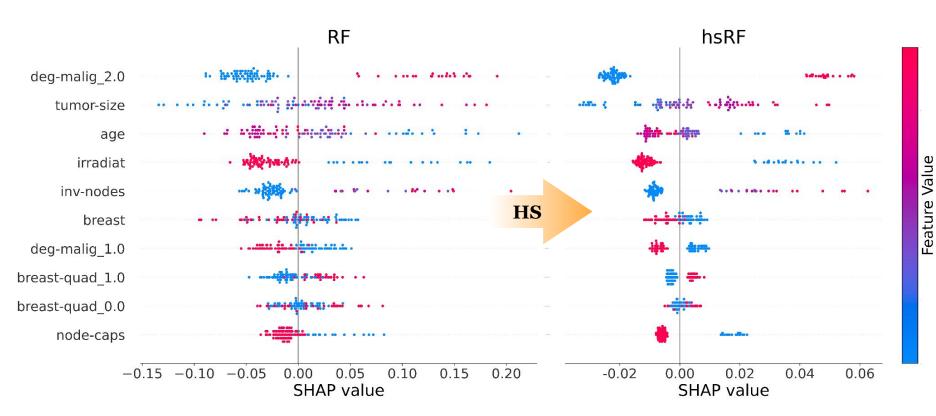
2. Refresher on SHAP [Lundberg, Lee (2017)]

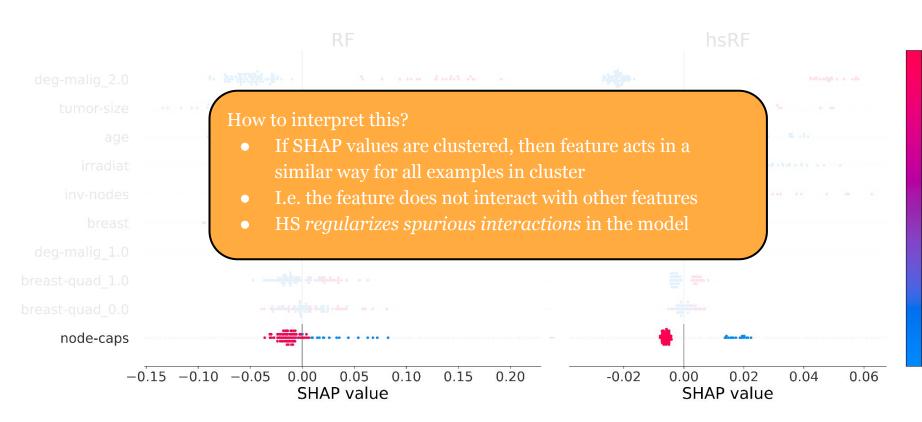
- SHAP is a local feature importance score
- Usually summarized in a SHAP plot











Conclusion

- Hierarchical shrinkage regularizes decision trees by shrinking the value of each node to those of its ancestors
- Is extremely fast and can be applied to any decision tree model or tree ensemble
- Improves prediction accuracy for decision tree and random forest models
- Improves interpretability of random forest models