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Online representation learning objectives fail in offline RL!



Online representation learning objectives fail in offline RL!

Exponential Error Amplification!



Can we provably perform good 
OPE on high-dimensional tasks 

through Representation Learning ?



One-Step OPE Ordinary Least Squares on 
.R(s, a) := 𝔼 [R ∣ S = s, A = a]



Multi-Step (RL) OPE Estimate .  

Curse of horizon!

Qπ(s, a) := 𝔼π [
∞

∑
h=0

γtrh ∣ s0 = s, a0 = a]

Wang, R., Foster, D. P., and Kakade, S. M. What are the statistical limits of offline RL with linear function approximation? ICLR 2021. 



Multi-Step (RL) OPE Estimate 

. Qπ(s, a) := 𝔼π [
∞

∑
h=0

γtrh ∣ s0 = s, a0 = a]
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Bellman Completeness

𝒯
π ( f )(s, a)

Projℱ𝒯π( f )(s, a)

εν

f

- If  is Bellman Completef

- If  is not Bellman Completef

Note 
- If exactly bellman complete, 

εν = 0

ℱ

Bellman Operator 𝒯π( f )(s, a) := r(s, a) + γ𝔼s′ ∼P(s,a)[ f(s′ , π)]

We say a representation  is Linear Bellman Complete if  is Bellman Complete.ϕ ℱ = {ϕTw : w ∈ ℝd}
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Learning Bellman Complete Features 
with coverage

• Suppose the representation class  contains a Linear BC feature , 
with coverage . 

• Self-supervised objective: 

  , 

s.t. .

Φ ϕ⋆

λmin(𝔼ν[ϕ⋆(s, a)ϕ⋆(s, a)T]) ≥ β

̂ϕ ∈ arg min
ϕ∈Φ

min
(ρ,M)∈Θ

𝔼𝒟 [M
ρT] ϕ(s, a) − [γϕ(s′ , πe)

r(s, a) ]
2

2

λmin (𝔼𝓓[ϕ(s, a)ϕ(s, a)T]) ≥ β/2
* formal result with stochastic transitions in paper.
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BCRL
1. Learn  by minimizing self-supervised 

Bellman Completeness loss.
̂ϕ

2. Run LSPE with the learned  .̂ϕ



Theory: Representation Learning
• Theorem: For any  and large enough dataset of size , with 

probability at least , we have that the ERM  satisfies, 

1. Approximately Linear BC, with , 

2. Coverage, with .

δ N
1 − δ ̂ϕ

εν = �̃� ( d ⋅ comp(Φ)

N )
λmin (𝔼ν[ ̂ϕ (s, a) ̂ϕ (s, a)T]) ≥ β/4

* formal result with stochastic transitions in paper.
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Statistical error from evaluation, 
converging to zero as N grows 
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Experiments
Setup

DeepMind Control Suite

4 Image Based Continuous Control Tasks

Task Target 
performance

Behavior 
Performance

Finger Turn Hard 927 226 (24%)

Cheetah Run 758 192 (25%)

Quadruped Walk 873 236 (27%)

Humanoid Stand 827 277 (33%)

Offline Datasets

Offline DB: 100K (~200 Trajectories)



Example Trajectories: Cheetah Run
Behavior Policy

Train on this …
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Example Trajectories: Cheetah Run
Behavior Policy Target Policy

Train on this … … to evaluate this



How is BCRL as a Representation?



How is BCRL as a Representation?

Representation Learning Comparison: 
CURL and SPR 



How is BCRL as a Representation?

LSPE Iterations with Fixed Trained Representations



How is BCRL as a Representation?

Exponential Error Amplification!



How is BCRL as a Representation?

Takeaway 
- Representations learned by BCRL outperforms baselines 
- BCRL does not exhibit exponential error amplification in any task
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Additional Baselines 
- Fitted Q-Evaluation (FQE) 
- Doubly Robust Estimator (DR) 
- Dreamer-v2 (Model-Based, MB) 
- Distribution Correction Estimator (DICE)
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OPE Performance

Takeaway 
- BCRL is competitive with FQE and outperforms other OPE baselines
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Testing Bellman Completeness



OPE Performance with On + Off policy Data
Testing Bellman Completeness

100K off-policy + 100K on-policy  
samples



OPE Performance with On + Off policy Data
Testing Bellman Completeness

NOTE: 
Adding on-policy ensures offline 

data coverage over target policy 
for all baselines

Demonstrate the unique 
benefit of learning Bellman 
complete representations!
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Takeaway 
- Learning Bellman complete 

representations improves OPE



Detailed Look 
Closer look at Cheetah and Humanoid
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OPE Performance Beyond Init. State Distribution
Testing Coverage

Evaluate at all time steps  
of target policy rollout



OPE Performance Beyond Init. State Distribution
Testing Coverage

NOTE: 
If representations are  

exactly Bellman Complete and 
has well-conditioned  

feature covariance matrix 

Should be able to evaluate 
well at any state



OPE Performance Beyond Init. State Distribution
Testing Coverage

Takeaway 
- BCRL more robustly evaluates 

out-of-distribution
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Takeaways

1. We can do provably good Offline Policy Evaluation with 
representations that are bellman complete and have good 
coverage over the offline data. 

2. BCRL is able to both scale to complex image-based tasks and be 
a competitive policy evaluator.

3. Although BCRL generally performs well, there is still room for 
improvement as seen in Humanoid Stand.



Thank you!
Github Repository: https://github.com/CausalML/bcrl

https://github.com/CausalML/bcrl


Appendices



CURL
• Contrastive loss pushes different 

cropped frames to have different 
representations.

Laskin, Michael, Aravind Srinivas, and Pieter Abbeel. "Curl: Contrastive unsupervised representations for reinforcement learning." International Conference on 
Machine Learning. PMLR, 2020.



SPR
• Bootstrapping from latent 

representations by predicting into 
the future.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A. C., and Bachman, P. Data-efficient reinforcement learning with momentum predictive 
representations. ICLR, 2021. 
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(ρ, M) ∈ BW × ℝd×d ∥M∥2 < 1

𝔼ν [M
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= 0

* formal result with norm constraints on  in paper.ρ, M

 is Linear BC, meaning .ϕ max
w1∈BW

min
w2∈BW

∥wT
2 ϕ − 𝒯π(wT

1 ϕ)∥ν = 0

Backward Direction: 
For any  set .w1 w2 = ρ + MTw1

Forward Direction: 
To get : set  and use . 

To get th row of :  
set  and use .

ρ w1 = 0 w2
i M

w1 = ei w2 − ρ
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Least Squares Policy Evaluation



Relative Coverage

  

where . 

Can be bounded when, e.g. 

•  is invertible and well-conditioned. 

• , i.e. density ratio is upper bounded. 

• .

κ(p0) := sup
x∈ℝd

xT𝔼dπe
p0

[ϕ(s, a)ϕ(s, a)T]x

xTΣ(ϕ)x

Σ(ϕ) = 𝔼ν[ϕ(s, a)ϕ(s, a)T]

Σ(ϕ)

ν =
1
2

dπe
p0

+
1
2

μ

λmax (Σ−1𝔼dπ
p0

[ϕ(s, a)ϕ(s, a)T])



Proof Breakdown
• First, a “value difference lemma”: 

. 
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Stochastic BCRL

• Recall the Bellman Complete loss is, 

  .min
(ρ,M)∈Θ

𝔼𝒟 [M
ρT] ϕ(s, a) − [γ𝔼s′ ∼P(s,a)[ϕ(s′ , πe)]

r(s, a) ]
2

2

• When task is stochastic, double sampling issue. 

• Fix by subtracting the overestimation bias. 
(which is the variance, and can be estimated!)



Stochastic BCRL

•  

 

• So, when MDP is stochastic, BCRL is:

                

                    s.t. .

𝔼ν∘P Mϕ(s, a) − γϕ(s′ , πe)
2

2
− 𝔼ν Mϕ(s, a) − γ𝔼s′ ∼P(s,a)[ϕ(s′ , πe)]

2

2

= inf
g

𝔼ν∘P γϕ(s′ , πe) − γ𝔼s′ ∼P(s,a)[ϕ(s′ , πe)]
2

2

̂ϕ ∈ arg min
ϕ∈Φ

min
(ρ,M)∈Θ

𝔼𝒟 [M
ρT] ϕ(s, a) − [γϕ(s′ , πe)

r(s, a) ]
2

2

− min
g∈𝒢

𝔼𝒟 g(s, a) − γϕ(s′ , πe)
2

2

λmin (𝔼𝒟[ϕ(s, a)ϕ(s, a)T]) ≥ β/2



Theory: Representation Learning
• Theorem: Assume realizability of .  

For any  and large enough dataset of size , with probability at least 
, we have that the ERM  satisfies, 

1. Approximately Linear BC, with 

, 

2. Coverage, with .

𝒢
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1 − δ ̂ϕ

εν = �̃� ( d ⋅ comp(Φ)

N
+

γ ⋅ comp(𝒢)

N )
λmin (𝔼ν[ ̂ϕ (s, a) ̂ϕ (s, a)T]) ≥ β/4


