H-Consistency Bounds for Surrogate Loss Minimizers

- Pranjal Awasthi Angi Mao Mehryar Mohri Yutao Zhong
 - Google Research and Courant Institute

Surrogate Loss versus Target Loss

Surrogate Loss versus Target Loss

Bayes-consistency

 $\lim_{n \to \infty} \mathcal{R}_{\ell_1}(h_n) - \mathcal{R}^*_{\ell_1, \mathcal{H}_{all}} = 0 \Rightarrow \lim_{n \to \infty} \mathcal{R}_{\ell_2}(h_n) - \mathcal{R}^*_{\ell_2, \mathcal{H}_{all}} = 0$ $n \rightarrow \infty$

Bayes-consistency

 $\lim_{n \to \infty} \mathcal{R}_{\ell_1}(h_n) - \mathcal{R}^*_{\ell_1, \mathcal{H}_{all}} = 0 \Rightarrow \lim_{n \to \infty} \mathcal{R}_{\ell_2}(h_n) - \mathcal{R}^*_{\ell_2, \mathcal{H}_{all}} = 0$ $n \rightarrow \infty$

H-consistency

 $\lim_{n \to \infty} \mathscr{R}_{\ell_1}(h_n) - \mathscr{R}^*_{\ell_1, \mathscr{H}} = 0 \Rightarrow \lim_{n \to \infty} \mathscr{R}_{\ell_2}(h_n) - \mathscr{R}^*_{\ell_2, \mathscr{H}} = 0$ $n \rightarrow \infty$

*H***-Consistency Bound**

 $\mathcal{R}_{\ell_{2}}(h) - \mathcal{R}^{*}_{\ell_{2},\mathcal{H}} \leq f\left(\mathcal{R}_{\ell_{1}}(h) - \mathcal{R}^{*}_{\ell_{1},\mathcal{H}}\right)$

*H***-Consistency Bound**

 $\mathcal{R}_{\ell_{2}}(h) - \mathcal{R}^{*}_{\ell_{2},\mathcal{H}} \leq f\left(\mathcal{R}_{\ell_{1}}(h) - \mathcal{R}^{*}_{\ell_{1},\mathcal{H}}\right)$

 \mathscr{P}_{all} – distribution independent

 $\forall h \in \mathcal{H}, \mathcal{D} \in \mathcal{P}$

Standard Binary Classification

Family of all measurable functions: \mathcal{H}_{all} All distributions: \mathscr{P}_{all} (Zhang, 04a; Bartlett et al., 06; Mohri et al., 18)

ℓ_1 : margin-based loss $\phi \leftarrow \ell_2 = \ell_2$: stanard 0/1 loss ℓ_{0-1}

Excess error bound (\mathcal{H}_{all} -consistency bound)

Standard Binary Classification

General hypothesis sets: \mathcal{H} Distribution-independent and distribution-dependent (Our contribution)

H-consistency bound

Adversarial Attacks (Szegedy et al., 13)

Correct Attack Ostrich Correct Attack Ostrich

Adversarially Robust Classification

General hypothesis sets: \mathcal{H} Distribution-independent and distribution-dependent (Our contribution)

$$\tilde{\phi} = \sup_{x': \|x-x'\| \le \gamma} \phi(yf(x'))$$

Adversarial *H*-consistency bound

*H***-Consistency Bounds Analysis**

$\mathcal{R}_{\ell_{2}}(h) - \mathcal{R}_{\ell_{2},\mathcal{H}}^{*} \leq f\left(\mathcal{R}_{\ell_{1}}(h) - \mathcal{R}_{\ell_{1},\mathcal{H}}^{*}\right)$

Inverse of \mathcal{H} -estimation error transformation + Minimizability gap

Minimizability Gap

 $\mathcal{M}_{\ell,\mathcal{H}} = \mathcal{R}^*_{\ell,\mathcal{H}} - \mathbb{E}_X \left[\mathcal{C}^*_{\ell,\mathcal{H}}(x) \right]$

difference of the best-in class error and the expectation of the minimal conditional-risk

$$\mathscr{C}^*_{\ell,\mathscr{H}}(x) = \inf_{h \in \mathscr{H}} \left[\mathscr{D}(Y=1 | X=x) \ell(h) \right]$$

 $(x, x, +1) + (1 - \mathcal{D}(Y = 1 | X = x))\ell(h, x, -1)$

Minimizability Gap

 $\mathcal{M}_{\ell,\mathcal{H}} = \mathcal{R}^*_{\ell,\mathcal{H}} - \mathbb{E}_X \left[\mathcal{C}^*_{\ell,\mathcal{H}}(x) \right]$

difference of the best-in class error and the expectation of the minimal conditional-risk

$$\mathscr{C}^*_{\ell,\mathscr{H}}(x) = \inf_{h \in \mathscr{H}} \left[\mathscr{D}(Y=1 \mid X=x) \ell(h) \right]$$

we cannot hope to estimate or minimize.

 $(h, x, +1) + (1 - \mathcal{D}(Y = 1 | X = x))\ell(h, x, -1)$

\mathcal{H} -Estimation Error Transformation

$\forall t \in [0,1], \ \mathcal{T}_{\Phi}(t) =$ Where $\mathcal{T}(t) :=$ in

Where $\mathcal{T}(t) := \inf_{x \in \mathcal{X}, h \in \mathcal{H}}$

$$\begin{aligned} \mathcal{T}(t)\mathbb{I}_{t\in[\epsilon,1]} + (\mathcal{T}(\epsilon)/\epsilon) t\mathbb{I}_{t\in[0,\epsilon)} \\ & \text{f}_{\mathscr{U}:h(x)<0} \Delta \mathcal{C}_{\Phi,\mathcal{H}}\left(h, x, \frac{t+1}{2}\right) \end{aligned}$$

\mathscr{H} -Estimation Error Transformation

 $\forall t \in [0,1], \ \mathcal{T}_{\Phi}(t) = \mathcal{T}(t)\mathbb{I}_{t \in [\varepsilon,1]} + (\mathcal{T}(\varepsilon)/\varepsilon) t\mathbb{I}_{t \in [0,\varepsilon)}$ Where $\mathcal{T}(t) := \inf_{x \in \mathcal{X}, h \in \mathcal{H}: h(x) < 0} \Delta \mathscr{C}_{\Phi, \mathcal{H}}\left(h, x, \frac{t+1}{2}\right)$

Tightness!

\mathcal{H} -Estimation Error Transformation

Conclusion

 \mathcal{H} -consistency bounds for both standard and adversarial binary classification

- the adversarial 0/1 loss function
- Compare different surrogate loss functions of the 0/1 loss or adversarial loss, given the specific hypothesis set used
- Theoretical and conceptual tools helpful for the analysis of other loss functions and other hypothesis sets

New estimation error guarantees for both the non-adversarial 0/1 loss function and

Conclusion

 \mathscr{H} -consistency bounds for both standard and adversarial binary classification

- the adversarial 0/1 loss function
- Compare different surrogate loss functions of the 0/1 loss or adversarial loss, given the specific hypothesis set used
- Theoretical and conceptual tools helpful for the analysis of other loss functions and other hypothesis sets

Future Directions

- \mathscr{H} -consistency bounds for other loss functions and other hypothesis sets • Incorporating the trade-off of the optimization and \mathcal{H} -consistency bounds

New estimation error guarantees for both the non-adversarial 0/1 loss function and

Poster #1206 in Hall E