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Nonparametric Semi-Structured Regression

Notations:
I Y ∈ R: response (e.g., housing price)
I s ∈M: structured features with known multivariate structures (e.g., spatial

locations on a constrained domain)
I x ∈ X : unstructured features with unknown or without multivariate structures

(e.g., square footage, housing age)
I D ⊂M×X : joint feature space.

Nonparametric regression models

Y = f (s, x) + ε, (1)

where f is an unknown mean function and ε
iid∼ N(0, σ2) with unknown σ2.

Goal: estimate unknown f and predict for (snew, xnew).
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Main Challenges

Structured feature space M has a (known) non-trivial geometry (e.g.,
irregular boundary, interior hole, irregular 3-d surfaces)

Irregular discontinuities in f (e.g., housing price)

Potentially high-dimensional unstructured features x

Potential interactions between s and x
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Figure: Examples of complex constrained domains
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Existing Methods

Spline smoothing (Ramsay, 2002; Lai and Schumaker, 2007; Wang and
Ranalli, 2007; Wood et al., 2008; Scott-Hayward et al., 2014; Sangalli et al.,
2013) and Gaussian process regression (Lin et al., 2019; Niu et al., 2019;
Borovitskiy et al., 2020; Dunson et al., 2022):

I Respect complex domain boundaries and intrinsic geometries in M 3

I Assume globally smooth f 7

I Usually assume an additive model for x, e.g., f (s, x) = xTβ + f (s) 7

I Tensor product splines have too many basis functions for high-dimensional x 7
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Existing Methods

Bayesian additive (univariate decision) regression trees (BART; Chipman
et al., 2010):

I Each tree generates axis-parallel partitions of the feature space
I Approximate f with summation of simple piecewise constant functions
I Local adaptivity to discontinuities and different levels of smoothness in f 3
I Capture some interaction effects among features 3
I Address feature scaling and feature selection issues with high dimensional x 3
I May not fully respect intrinsic geometries in M or capture irregular

discontinuities in f 7

Bayesian additive spanning trees (BAST; Luo et al., 2021):
I Using flexible spanning tree partitions for M, which respects its intrinsic

geometry 3
I Not straightforward to include unstructured features x 7
I Lack of a coherent model for prediction 7
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Semi-Multivariate Decision Trees (sMDTs)

Each node η represents a subset Dη ⊂ D.

1. Start with a root node representing D.

2. Split a terminal node η with probability
psplit(η). If η splits, choose one split rule
to obtain a bipartition {Dη,1,Dη,2} of
Dη:

2.1 With probability pm, perform a
multivariate split using the structured
features s.

2.2 Otherwise, perform a univariate split
using one of the unstructured features x.

3. Apply Step 2 to each offspring node of η.

Figure: An example of sMDT
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Univariate Split Rules

A node η in an sMDT represents a subset Dη ⊂ D.
I Dη = D if η is the root node.

A univariate split rule divides Dη into

Dη,1 = {(x, s) ∈ Dη : xj(η) ≤ cη}, Dη,2 = Dη \ Dη,1,

for some coordinate j(η) ∈ {1, . . . , p} where p = dim(x).
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Multivariate Split Rules

Project Dη to M to obtain Mη. Partition Mη into {Mη,1,Mη,2}.

A structured multivariate split rule divides Dη into

Dη,k = Dη ∩ (Mη,k ×X ), for k = 1, 2.
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Multivariate Split Rules

Project Dη to M to obtain Mη. Partition Mη into {Mη,1,Mη,2}.
A structured multivariate split rule divides Dη into

Dη,k = Dη ∩ (Mη,k ×X ), for k = 1, 2.

Main challenges:

I Mη varies with nodes η and can be disconnected.

I How to partition Mη such that both Dη,1 and Dη,2 contain non-empty
subsets of observations?

I How to partition Mη into subsets with flexible shapes while respecting its
intrinsic geometry?
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Manifold Bipartitions via Predictive Spanning Trees

Notations:
I S∗: Reference knots on M.
I G∗T : Fixed undirected spanning tree

graph on S∗.

To obtain a bipartition of Mη:

1. Identify S∗
η : Union of the nearest

reference knot of each observed point in
Mη under geodesic distance dg .

2. Randomly sample two knots s∗ and t∗

from S∗
η .

3. Randomly sample an edge e∗ from the
unique path in G∗T connecting s∗ and t∗.

4. Remove e∗ from G∗T to obtain
bipartitions of S∗

η and Mη.
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A Bayesian Sum-of-multivariate-decision-trees Model

Let T denote an sMDT. Define a piecewise constant mapping from D to R

g(s, x|T ,µ) = µj , if (s, x) ∈ Dj .

BAMDT models f (s, x) with smmation of piecewise constant functions:

f (s, x) =
M∑

m=1

g(s, x|Tm,µm).

Regularization prior:

p
(
{Tm,µm}Mm=1, σ

2
)

=

{
M∏

m=1

p(µm|Tm)p(Tm)

}
p(σ2),

I Generative prior model for {Tm} that encourages shallow sMDTs.
I Shrinkage Gaussian prior for µm.
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Bayesian Inference

To draw a posterior sample from [Tm|−] with µm marginalized out, perform
one of the following moves.

I Grow: Randomly choose a terminal node of Tm and split it following Step 2 of
the sMDT generating process.

I Prune: Randomly choose a node of Tm with two terminal nodes and remove it
(and its children) from Tm.

Importance metric for a feature z :
I Defined as the proportion of the split rules involving z in the ensemble.
I z can be s, x1, . . ., or xp.
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Bitten Torus Example

Simulate spatially correlated
features x with p ∈ {2, 10}.
The true function only depends
on s and x1.

When p = 10, avg. % of splits
involving (s, x1) in BAMDT is
73% (vs 63% in BART).

Table: Average prediction performance
over 50 replicates for p = 10.

MSPE MAPE CRPS

BAMDT 1.17 0.62 0.49
BART 2.09 0.79 0.65
GP-iso 1.56 0.80 0.64
GP-aniso 1.60 0.82 0.65
BAST-s 1.61 0.81 0.59
BAST-KNN 2.06 0.85 0.63

Figure: True function and predictive
surfaces on M in the setting of p = 2

Luo, Sang, and Mallick (TAMU) BAMDT ICML 2022 16 / 21



Application to Sacramento Housing Data

Model log(housing price) using
spatial locations, square footage,
#bedrooms, and #bathrooms.

BAMDT provides more accurate
prediction than its competing
methods based on 5-fold CV.
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Figure: Observed data and predicted price
for a representative house.
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Conclusion and Future Work

A novel Bayesian ensemble model, BAMDT, is developed for nonparametric
semi-structured regression problems with complex structured feature spaces
using flexible semi-multivariate decision trees as weak learners.

Next steps:

I Extension to unknown manifolds where geodesic distance metrics need to be
estimated.

I Adopting BAMDT as a nonparametric prior model for latent functions in
many Bayesian hierarchical modeling settings.

I Theoretical guarantee such as posterior concentration results.
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Thanks!!
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