BAMDT: Bayesian Additive Semi-Multivariate Decision Trees for Nonparametric Regression

Zhao Tang Luo, Huiyan Sang, and Bani Mallick

Department of Statistics Texas A&M University

ICML 2022

Luo, Sang, and Mallick (TAMU)

ICML 2022 1 / 21

イロト イポト イヨト イヨト

Nonparametric Semi-Structured Regression

- Notations:
 - $Y \in \mathbb{R}$: response (e.g., housing price)
 - ► s ∈ M: structured features with known multivariate structures (e.g., spatial locations on a constrained domain)
 - x ∈ X: unstructured features with unknown or without multivariate structures (e.g., square footage, housing age)
 - $\mathcal{D} \subset \mathcal{M} \times \mathcal{X}$: joint feature space.
- Nonparametric regression models

$$Y = f(s, x) + \epsilon, \tag{1}$$

イロト イボト イヨト イヨト

where f is an unknown mean function and $\epsilon \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ with unknown σ^2 .

• Goal: estimate unknown *f* and predict for (s_{new}, x_{new}).

Main Challenges

- Structured feature space \mathcal{M} has a (known) non-trivial geometry (e.g., irregular boundary, interior hole, irregular 3-d surfaces)
- Irregular discontinuities in f (e.g., housing price)
- Potentially high-dimensional unstructured features x
- Potential interactions between s and x

Figure: Examples of complex constrained domains

イロト イポト イヨト イヨト

Existing Methods

- Spline smoothing (Ramsay, 2002; Lai and Schumaker, 2007; Wang and Ranalli, 2007; Wood et al., 2008; Scott-Hayward et al., 2014; Sangalli et al., 2013) and Gaussian process regression (Lin et al., 2019; Niu et al., 2019; Borovitskiy et al., 2020; Dunson et al., 2022):
 - \blacktriangleright Respect complex domain boundaries and intrinsic geometries in \mathcal{M} 🗸
 - Assume globally smooth f X
 - ► Usually assume an additive model for x, e.g., $f(s,x) = x^T \beta + f(s) \checkmark$
 - Tensor product splines have too many basis functions for high-dimensional x X

イロト イボト イヨト イヨト

Existing Methods

- Bayesian additive (univariate decision) regression trees (BART; Chipman et al., 2010):
 - Each tree generates axis-parallel partitions of the feature space
 - Approximate *f* with summation of simple piecewise constant functions
 - Local adaptivity to discontinuities and different levels of smoothness in f

 - Address feature scaling and feature selection issues with high dimensional x \checkmark
 - May not fully respect intrinsic geometries in *M* or capture irregular discontinuities in *f* ×
- Bayesian additive spanning trees (BAST; Luo et al., 2021):
 - ► Using flexible spanning tree partitions for *M*, which respects its intrinsic geometry ✓
 - Not straightforward to include unstructured features x X
 - Lack of a coherent model for prediction X

イロト イボト イヨト イヨト

Semi-Multivariate Decision Trees (sMDTs)

Each node η represents a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$.

- 1. Start with a root node representing \mathcal{D} .
- 2. Split a terminal node η with probability $p_{\text{split}}(\eta)$. If η splits, choose one split rule to obtain a bipartition $\{\mathcal{D}_{\eta,1}, \mathcal{D}_{\eta,2}\}$ of \mathcal{D}_{η} :
 - 2.1 With probability p_m, perform a multivariate split using the structured features s.
 - 2.2 Otherwise, perform a univariate split using one of the unstructured features x.
- 3. Apply Step 2 to each offspring node of η .

Figure: An example of sMDT

イロト イボト イヨト イヨト

Univariate Split Rules

- A node η in an sMDT represents a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$.
 - $\mathcal{D}_{\eta} = \mathcal{D}$ if η is the root node.

Univariate Split Rules

- A node η in an sMDT represents a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$.
 - $\mathcal{D}_{\eta} = \mathcal{D}$ if η is the root node.
- A univariate split rule divides \mathcal{D}_{η} into

$$\mathcal{D}_{\eta,1} = \{ (\mathsf{x},\mathsf{s}) \in \mathcal{D}_\eta : x_{j(\eta)} \leq c_\eta \}, \quad \mathcal{D}_{\eta,2} = \mathcal{D}_\eta \setminus \mathcal{D}_{\eta,1},$$

for some coordinate $j(\eta) \in \{1, \dots, p\}$ where p = dim(x).

• Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η} . Partition \mathcal{M}_{η} into $\{\mathcal{M}_{\eta,1}, \mathcal{M}_{\eta,2}\}$.

• Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η} . Partition \mathcal{M}_{η} into $\{\mathcal{M}_{\eta,1}, \mathcal{M}_{\eta,2}\}$.

・ロト ・回 ト ・ ヨト ・

- Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η} . Partition \mathcal{M}_{η} into $\{\mathcal{M}_{\eta,1}, \mathcal{M}_{\eta,2}\}$.
- A structured multivariate split rule divides \mathcal{D}_{η} into

$${\mathcal D}_{\eta,k}={\mathcal D}_\eta\cap ({\mathcal M}_{\eta,k} imes {\mathcal X}), \quad ext{for } k=1,2.$$

イロト イヨト イヨト イ

- Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η} . Partition \mathcal{M}_{η} into $\{\mathcal{M}_{\eta,1}, \mathcal{M}_{\eta,2}\}$.
- A structured multivariate split rule divides \mathcal{D}_{η} into

$$\mathcal{D}_{\eta,k} = \mathcal{D}_{\eta} \cap (\mathcal{M}_{\eta,k} \times \mathcal{X}), \quad ext{for } k = 1, 2.$$

- Main challenges:
 - \mathcal{M}_{η} varies with nodes η and can be disconnected.
 - How to partition \mathcal{M}_{η} such that both $\mathcal{D}_{\eta,1}$ and $\mathcal{D}_{\eta,2}$ contain non-empty subsets of observations?
 - How to partition M_η into subsets with flexible shapes while respecting its intrinsic geometry?

イロン イ団 とく ヨン イヨン

- Notations:
 - S^* : Reference knots on \mathcal{M} .
 - G^{*}_T: Fixed undirected spanning tree graph on S^{*}.

Figure: A predictive spanning tree bipartition

イロト イポト イヨト イヨ

- Notations:
 - S^* : Reference knots on \mathcal{M} .
 - G^{*}_T: Fixed undirected spanning tree graph on S^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :
 - Identify S^{*}_η: Union of the nearest reference knot of each observed point in M_η under geodesic distance d_g.

Figure: A predictive spanning tree bipartition

< □ > < 同 > < 三 > < Ξ

- Notations:
 - S^* : Reference knots on \mathcal{M} .
 - G^{*}_T: Fixed undirected spanning tree graph on S^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :
 - Identify S_η^{*}: Union of the nearest reference knot of each observed point in M_η under geodesic distance d_g.
 - Randomly sample two knots s^{*} and t^{*} from S^{*}_η.
 - Randomly sample an edge e* from the unique path in G^{*}_T connecting s* and t*.

Figure: A predictive spanning tree bipartition

- Notations:
 - S^* : Reference knots on \mathcal{M} .
 - G^{*}_T: Fixed undirected spanning tree graph on S^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :
 - 1. Identify S_{η}^* : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_g .
 - Randomly sample two knots s^{*} and t^{*} from S^{*}_η.
 - Randomly sample an edge e* from the unique path in G^{*}_T connecting s* and t*.
 - 4. Remove e^* from \mathcal{G}_T^* to obtain bipartitions of \mathcal{S}_{η}^* and \mathcal{M}_{η} .

Figure: A predictive spanning tree bipartition

イロト イポト イヨト イヨー

- Notations:
 - S^* : Reference knots on \mathcal{M} .
 - G^{*}_T: Fixed undirected spanning tree graph on S^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :
 - 1. Identify S_{η}^* : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_g .
 - Randomly sample two knots s* and t* from S^{*}_η.
 - Randomly sample an edge e* from the unique path in G^{*}_T connecting s* and t*.
 - 4. Remove e^* from \mathcal{G}_T^* to obtain bipartitions of \mathcal{S}_{η}^* and \mathcal{M}_{η} .

Figure: A predictive spanning tree bipartition

イロト イポト イヨト イヨー

ICML 2022 13 / 21

A Bayesian Sum-of-multivariate-decision-trees Model

• Let T denote an sMDT. Define a piecewise constant mapping from \mathcal{D} to \mathbb{R}

$$g(\mathsf{s},\mathsf{x}|\mathcal{T},\boldsymbol{\mu}) = \mu_j, \quad \text{if } (\mathsf{s},\mathsf{x}) \in \mathcal{D}_j.$$

• BAMDT models f(s, x) with smmation of piecewise constant functions:

$$f(\mathbf{s},\mathbf{x}) = \sum_{m=1}^{M} g(\mathbf{s},\mathbf{x}|T_m,\boldsymbol{\mu}_m).$$

• Regularization prior:

$$p\left(\{T_m, \mu_m\}_{m=1}^M, \sigma^2\right) = \left\{\prod_{m=1}^M p(\mu_m | T_m) p(T_m)\right\} p(\sigma^2),$$

- Generative prior model for $\{T_m\}$ that encourages shallow sMDTs.
- Shrinkage Gaussian prior for μ_m.

イロト 不得下 イヨト イヨト

Bayesian Inference

- To draw a posterior sample from [*T_m*|−] with μ_m marginalized out, perform one of the following moves.
 - ► Grow: Randomly choose a terminal node of T_m and split it following Step 2 of the sMDT generating process.
 - Prune: Randomly choose a node of T_m with two terminal nodes and remove it (and its children) from T_m .
- Importance metric for a feature z:
 - ▶ Defined as the proportion of the split rules involving *z* in the ensemble.
 - z can be s, x_1, \ldots , or x_p .

イロト 不得 トイヨト イヨト

Bitten Torus Example

- Simulate spatially correlated features x with p ∈ {2,10}.
- The true function only depends on s and x₁.
- When *p* = 10, avg. % of splits involving (s, *x*₁) in BAMDT is 73% (vs 63% in BART).

Table: Average	prediction	performance
over 50 replicate	es for $p =$	10.

	MSPE	MAPE	CRPS
BAMDT	1.17	0.62	0.49
BART	2.09	0.79	0.65
GP-iso	1.56	0.80	0.64
GP-aniso	1.60	0.82	0.65
BAST-s	1.61	0.81	0.59
BAST-KNN	2.06	0.85	0.63

Figure: True function and predictive surfaces on M in the setting of p = 2

イロト 不得下 イヨト イヨト

Application to Sacramento Housing Data

 Model log(housing price) using spatial locations, square footage, #bedrooms, and #bathrooms.

 BAMDT provides more accurate prediction than its competing methods based on 5-fold CV.

Figure: Observed data and predicted price for a representative house.

イロト 不得下 イヨト イヨト

Conclusion and Future Work

• A novel Bayesian ensemble model, BAMDT, is developed for nonparametric semi-structured regression problems with complex structured feature spaces using flexible semi-multivariate decision trees as weak learners.

• Next steps:

- Extension to unknown manifolds where geodesic distance metrics need to be estimated.
- Adopting BAMDT as a nonparametric prior model for latent functions in many Bayesian hierarchical modeling settings.
- Theoretical guarantee such as posterior concentration results.

イロト イポト イヨト イヨト

Thanks!!

メロト メタト メヨト メヨト

References I

- Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020). Matérn Gaussian processes on Riemannian manifolds. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*.
- Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: Bayesian additive regression trees. *The Annals of Applied Statistics*, 4(1):266–298.
- Dunson, D. B., Wu, H.-T., Wu, N., et al. (2022). Graph based Gaussian processes on restricted domains. Journal of the Royal Statistical Society Series B, 84(2):414–439.
- Joshi, A. A., Chong, M., Li, J., Choi, S., and Leahy, R. M. (2018). Are you thinking what i'm thinking? synchronization of resting fmri time-series across subjects. *NeuroImage*, 172:740–752.
- Lai, M.-J. and Schumaker, L. L. (2007). *Spline functions on triangulations*, volume 110. Cambridge University Press.
- Lin, L., Mu, N., Cheung, P., and Dunson, D. (2019). Extrinsic Gaussian processes for regression and classification on manifolds. *Bayesian Analysis*, 14(3):887–906.
- Luo, Z. T., Sang, H., and Mallick, B. (2021). BAST: Bayesian additive regression spanning trees for complex constrained domain. Advances in Neural Information Processing Systems, 34.
- Niu, M., Cheung, P., Lin, L., Dai, Z., Lawrence, N., and Dunson, D. (2019). Intrinsic Gaussian processes on complex constrained domains. *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 81(3):603–627.
- Ramsay, T. (2002). Spline smoothing over difficult regions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2):307–319.

References II

- Sangalli, L. M., Ramsay, J. O., and Ramsay, T. O. (2013). Spatial spline regression models. Journal of the Royal Statistical Society: Series B: Statistical Methodology, pages 681–703.
- Scott-Hayward, L. A. S., MacKenzie, M. L., Donovan, C. R., Walker, C., and Ashe, E. (2014). Complex region spatial smoother (CReSS). *Journal of Computational and Graphical Statistics*, 23(2):340–360.
- Wang, H. and Ranalli, M. G. (2007). Low-rank smoothing splines on complicated domains. *Biometrics*, 63(1):209–217.
- Wood, S. N., Bravington, M. V., and Hedley, S. L. (2008). Soap film smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):931–955.

イロト イヨト イヨト イヨト