BAMDT: Bayesian Additive Semi-Multivariate Decision Trees for Nonparametric Regression

Zhao Tang Luo, Huiyan Sang, and Bani Mallick

Department of Statistics
Texas A\&M University

ICML 2022

Nonparametric Semi-Structured Regression

- Notations:
- $Y \in \mathbb{R}$: response (e.g., housing price)
- $s \in \mathcal{M}$: structured features with known multivariate structures (e.g., spatial locations on a constrained domain)
- $x \in \mathcal{X}$: unstructured features with unknown or without multivariate structures (e.g., square footage, housing age)
- $\mathcal{D} \subset \mathcal{M} \times \mathcal{X}$: joint feature space.
- Nonparametric regression models

$$
\begin{equation*}
Y=f(\mathrm{~s}, \mathrm{x})+\epsilon \tag{1}
\end{equation*}
$$

where f is an unknown mean function and $\epsilon \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$ with unknown σ^{2}.

- Goal: estimate unknown f and predict for $\left(s_{\text {new }}, x_{\text {new }}\right)$.

Main Challenges

- Structured feature space \mathcal{M} has a (known) non-trivial geometry (e.g., irregular boundary, interior hole, irregular 3-d surfaces)
- Irregular discontinuities in f (e.g., housing price)
- Potentially high-dimensional unstructured features x
- Potential interactions between s and x

Figure: Examples of complex constrained domains

Existing Methods

- Spline smoothing (Ramsay, 2002; Lai and Schumaker, 2007; Wang and Ranalli, 2007; Wood et al., 2008; Scott-Hayward et al., 2014; Sangalli et al., 2013) and Gaussian process regression (Lin et al., 2019; Niu et al., 2019; Borovitskiy et al., 2020; Dunson et al., 2022):
- Respect complex domain boundaries and intrinsic geometries in \mathcal{M}
- Assume globally smooth $f X$
- Usually assume an additive model for x , e.g., $f(\mathrm{~s}, \mathrm{x})=\mathrm{x}^{\top} \boldsymbol{\beta}+f(\mathrm{~s}) \boldsymbol{x}$
- Tensor product splines have too many basis functions for high-dimensional $\times x$

Existing Methods

- Bayesian additive (univariate decision) regression trees (BART; Chipman et al., 2010):
- Each tree generates axis-parallel partitions of the feature space
- Approximate f with summation of simple piecewise constant functions
- Local adaptivity to discontinuities and different levels of smoothness in f
- Capture some interaction effects among features
- Address feature scaling and feature selection issues with high dimensional \times
- May not fully respect intrinsic geometries in \mathcal{M} or capture irregular discontinuities in $f X$
- Bayesian additive spanning trees (BAST; Luo et al., 2021):
- Using flexible spanning tree partitions for \mathcal{M}, which respects its intrinsic geometry
- Not straightforward to include unstructured features $\times X$
- Lack of a coherent model for prediction X

Semi-Multivariate Decision Trees (sMDTs)

Each node η represents a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$.

1. Start with a root node representing \mathcal{D}.
2. Split a terminal node η with probability $p_{\text {split }}(\eta)$. If η splits, choose one split rule to obtain a bipartition $\left\{\mathcal{D}_{\eta, 1}, \mathcal{D}_{\eta, 2}\right\}$ of \mathcal{D}_{η} :
2.1 With probability p_{m}, perform a multivariate split using the structured features s.
2.2 Otherwise, perform a univariate split using one of the unstructured features x.

Figure: An example of sMDT
3. Apply Step 2 to each offspring node of η.

Univariate Split Rules

- A node η in an sMDT represents a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$.
- $\mathcal{D}_{\eta}=\mathcal{D}$ if η is the root node.

Univariate Split Rules

- A node η in an sMDT represents a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$.
- $\mathcal{D}_{\eta}=\mathcal{D}$ if η is the root node.
- A univariate split rule divides \mathcal{D}_{η} into

$$
\mathcal{D}_{\eta, 1}=\left\{(\mathrm{x}, \mathrm{~s}) \in \mathcal{D}_{\eta}: x_{j(\eta)} \leq c_{\eta}\right\}, \quad \mathcal{D}_{\eta, 2}=\mathcal{D}_{\eta} \backslash \mathcal{D}_{\eta, 1}
$$

for some coordinate $j(\eta) \in\{1, \ldots, p\}$ where $p=\operatorname{dim}(\mathrm{x})$.

Multivariate Split Rules

- Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η}. Partition \mathcal{M}_{η} into $\left\{\mathcal{M}_{\eta, 1}, \mathcal{M}_{\eta, 2}\right\}$.

Multivariate Split Rules

- Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η}. Partition \mathcal{M}_{η} into $\left\{\mathcal{M}_{\eta, 1}, \mathcal{M}_{\eta, 2}\right\}$.

Multivariate Split Rules

- Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η}. Partition \mathcal{M}_{η} into $\left\{\mathcal{M}_{\eta, 1}, \mathcal{M}_{\eta, 2}\right\}$.
- A structured multivariate split rule divides \mathcal{D}_{η} into

$$
\mathcal{D}_{\eta, k}=\mathcal{D}_{\eta} \cap\left(\mathcal{M}_{\eta, k} \times \mathcal{X}\right), \quad \text { for } k=1,2
$$

s_{h}

Multivariate Split Rules

- Project \mathcal{D}_{η} to \mathcal{M} to obtain \mathcal{M}_{η}. Partition \mathcal{M}_{η} into $\left\{\mathcal{M}_{\eta, 1}, \mathcal{M}_{\eta, 2}\right\}$.
- A structured multivariate split rule divides \mathcal{D}_{η} into

$$
\mathcal{D}_{\eta, k}=\mathcal{D}_{\eta} \cap\left(\mathcal{M}_{\eta, k} \times \mathcal{X}\right), \quad \text { for } k=1,2
$$

- Main challenges:
- \mathcal{M}_{η} varies with nodes η and can be disconnected.
- How to partition \mathcal{M}_{η} such that both $\mathcal{D}_{\eta, 1}$ and $\mathcal{D}_{\eta, 2}$ contain non-empty subsets of observations?
- How to partition \mathcal{M}_{η} into subsets with flexible shapes while respecting its intrinsic geometry?

Manifold Bipartitions via Predictive Spanning Trees

- Notations:
- \mathcal{S}^{*} : Reference knots on \mathcal{M}.
- \mathcal{G}_{T}^{*} : Fixed undirected spanning tree graph on \mathcal{S}^{*}.

Figure: A predictive spanning tree bipartition

Manifold Bipartitions via Predictive Spanning Trees

- Notations:
- \mathcal{S}^{*} : Reference knots on \mathcal{M}.
- \mathcal{G}_{T}^{*} : Fixed undirected spanning tree graph on \mathcal{S}^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :

1. Identify \mathcal{S}_{η}^{*} : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_{g}.

Figure: A predictive spanning tree bipartition

Manifold Bipartitions via Predictive Spanning Trees

- Notations:
- \mathcal{S}^{*} : Reference knots on \mathcal{M}.
- \mathcal{G}_{T}^{*} : Fixed undirected spanning tree graph on \mathcal{S}^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :

1. Identify \mathcal{S}_{η}^{*} : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_{g}.
2. Randomly sample two knots s^{*} and t^{*} from \mathcal{S}_{η}^{*}.
3. Randomly sample an edge e^{*} from the unique path in \mathcal{G}_{T}^{*} connecting s^{*} and t^{*}.

Figure: A predictive spanning tree bipartition

Manifold Bipartitions via Predictive Spanning Trees

- Notations:
- \mathcal{S}^{*} : Reference knots on \mathcal{M}.
- \mathcal{G}_{T}^{*} : Fixed undirected spanning tree graph on \mathcal{S}^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :

1. Identify \mathcal{S}_{η}^{*} : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_{g}.
2. Randomly sample two knots s^{*} and t^{*} from \mathcal{S}_{η}^{*}.
3. Randomly sample an edge e^{*} from the unique path in \mathcal{G}_{T}^{*} connecting s^{*} and t^{*}.
4. Remove e^{*} from \mathcal{G}_{T}^{*} to obtain bipartitions of \mathcal{S}_{η}^{*} and \mathcal{M}_{η}.

Figure: A predictive spanning tree bipartition

Manifold Bipartitions via Predictive Spanning Trees

- Notations:
- \mathcal{S}^{*} : Reference knots on \mathcal{M}.
- \mathcal{G}_{T}^{*} : Fixed undirected spanning tree graph on \mathcal{S}^{*}.
- To obtain a bipartition of \mathcal{M}_{η} :

1. Identify \mathcal{S}_{η}^{*} : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_{g}.
2. Randomly sample two knots s^{*} and t^{*} from \mathcal{S}_{η}^{*}.
3. Randomly sample an edge e^{*} from the unique path in \mathcal{G}_{T}^{*} connecting s^{*} and t^{*}.
4. Remove e^{*} from \mathcal{G}_{T}^{*} to obtain bipartitions of \mathcal{S}_{η}^{*} and \mathcal{M}_{η}.

Figure: A predictive spanning tree bipartition

A Bayesian Sum-of-multivariate-decision-trees Model

- Let T denote an sMDT. Define a piecewise constant mapping from \mathcal{D} to \mathbb{R}

$$
g(\mathrm{~s}, \mathrm{x} \mid T, \boldsymbol{\mu})=\mu_{j}, \quad \text { if }(\mathrm{s}, \mathrm{x}) \in \mathcal{D}_{j}
$$

- BAMDT models $f(s, x)$ with smmation of piecewise constant functions:

$$
f(\mathrm{~s}, \mathrm{x})=\sum_{m=1}^{M} g\left(\mathrm{~s}, \mathrm{x} \mid T_{m}, \boldsymbol{\mu}_{m}\right)
$$

- Regularization prior:

$$
p\left(\left\{T_{m}, \boldsymbol{\mu}_{m}\right\}_{m=1}^{M}, \sigma^{2}\right)=\left\{\prod_{m=1}^{M} p\left(\boldsymbol{\mu}_{m} \mid T_{m}\right) p\left(T_{m}\right)\right\} p\left(\sigma^{2}\right),
$$

- Generative prior model for $\left\{T_{m}\right\}$ that encourages shallow sMDTs.
- Shrinkage Gaussian prior for μ_{m}.

Bayesian Inference

- To draw a posterior sample from [$T_{m} \mid-$] with $\boldsymbol{\mu}_{m}$ marginalized out, perform one of the following moves.
- Grow: Randomly choose a terminal node of T_{m} and split it following Step 2 of the sMDT generating process.
- Prune: Randomly choose a node of T_{m} with two terminal nodes and remove it (and its children) from \mathcal{T}_{m}.
- Importance metric for a feature z :
- Defined as the proportion of the split rules involving z in the ensemble.
- z can be s, x_{1}, \ldots, or x_{p}.

Bitten Torus Example

- Simulate spatially correlated features \times with $p \in\{2,10\}$.
- The true function only depends on s and x_{1}.
- When $p=10$, avg. \% of splits involving (s, x_{1}) in BAMDT is 73% (vs 63\% in BART).

Table: Average prediction performance over 50 replicates for $p=10$.

	MSPE	MAPE	CRPS
BAMDT	1.17	0.62	0.49
BART	2.09	0.79	0.65
GP-iso	1.56	0.80	0.64
GP-aniso	1.60	0.82	0.65
BAST-s	1.61	0.81	0.59
BAST-KNN	2.06	0.85	0.63

Figure: True function and predictive surfaces on \mathcal{M} in the setting of $p=2$

Application to Sacramento Housing Data

- Model \log (housing price) using spatial locations, square footage, \#bedrooms, and \#bathrooms.
- BAMDT provides more accurate prediction than its competing methods based on 5 -fold CV.

Figure: Observed data and predicted price for a representative house.

Conclusion and Future Work

- A novel Bayesian ensemble model, BAMDT, is developed for nonparametric semi-structured regression problems with complex structured feature spaces using flexible semi-multivariate decision trees as weak learners.
- Next steps:
- Extension to unknown manifolds where geodesic distance metrics need to be estimated.
- Adopting BAMDT as a nonparametric prior model for latent functions in many Bayesian hierarchical modeling settings.
- Theoretical guarantee such as posterior concentration results.

Thanks!!

References I

Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020). Matérn Gaussian processes on Riemannian manifolds. In Proceedings of Advances in Neural Information Processing Systems (NeurIPS).
Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1):266-298.
Dunson, D. B., Wu, H.-T., Wu, N., et al. (2022). Graph based Gaussian processes on restricted domains. Journal of the Royal Statistical Society Series B, 84(2):414-439.
Joshi, A. A., Chong, M., Li, J., Choi, S., and Leahy, R. M. (2018). Are you thinking what i'm thinking? synchronization of resting fmri time-series across subjects. Neurolmage, 172:740-752.

Lai, M.-J. and Schumaker, L. L. (2007). Spline functions on triangulations, volume 110. Cambridge University Press.
Lin, L., Mu, N., Cheung, P., and Dunson, D. (2019). Extrinsic Gaussian processes for regression and classification on manifolds. Bayesian Analysis, 14(3):887-906.
Luo, Z. T., Sang, H., and Mallick, B. (2021). BAST: Bayesian additive regression spanning trees for complex constrained domain. Advances in Neural Information Processing Systems, 34.
Niu, M., Cheung, P., Lin, L., Dai, Z., Lawrence, N., and Dunson, D. (2019). Intrinsic Gaussian processes on complex constrained domains. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(3):603-627.
Ramsay, T. (2002). Spline smoothing over difficult regions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2):307-319.

References II

Sangalli, L. M., Ramsay, J. O., and Ramsay, T. O. (2013). Spatial spline regression models. Journal of the Royal Statistical Society: Series B: Statistical Methodology, pages 681-703.
Scott-Hayward, L. A. S., MacKenzie, M. L., Donovan, C. R., Walker, C., and Ashe, E. (2014). Complex region spatial smoother (CReSS). Journal of Computational and Graphical Statistics, 23(2):340-360.
Wang, H. and Ranalli, M. G. (2007). Low-rank smoothing splines on complicated domains. Biometrics, 63(1):209-217.

Wood, S. N., Bravington, M. V., and Hedley, S. L. (2008). Soap film smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):931-955.

