

Graph Neural Networks

Zhongyu Huang^{1,2}, Yingheng Wang^{3,4}, Chaozhuo Li⁵, Huiguang He^{1,2}

Permutation-invariance: permutation of the nodes of the input graph does not affect the output. x_1

For invariant aggregators such as SUM, we have ordering-invariance:

$$f(x_1, x_2, x_3) = f(x_1, x_3, x_2) = f(x_2, x_1, x_3) = f(x_2, x_3, x_1) =$$

$$f(x_3, x_1, x_2) = f(x_3, x_2, x_1) = x_1 + x_2 + x_3$$

Pariance:

$$v$$

 x_3
 $a_v = f(x_1, x_2, x_3) = x_1 + x_2 + x_3$

and label-invariance:

02 Limitation of Permutation-Invariance

They *ignore* the relationships among neighboring nodes.

⁰³/More Powerful Permutation-Sensitive Aggregators

They *can count* the graph substructures such as triangles.

04 Limitation of Permutation-Sensitivity

For sensitive aggregators, they need to cover all n! possible permutations (node orderings) to guarantee the permutation-invariance of GNNs, x_1

such as ordering-invariance:

 $f(x_1, x_2, x_3) + f(x_1, x_3, x_2) + f(x_2, x_1, x_3) + f(x_2, x_3, x_1) +$ $f(x_3, x_1, x_2) + f(x_3, x_2, x_1) \rightarrow \text{overall invariant to } \{x_1, x_2, x_3\}$ and label-invariance:

Approximate the permutation-invariance: Avoid $\mathcal{O}(n!)$

Model all 2-ary dependencies (pairwise correlations) to ensure the invariance to 2-ary dependencies and thus approximate the permutation-invariance (invariance to *n*-ary dependencies): From O(n!) to $O(n^2)$

 Full 2-ary dependencies can also capture whether any two neighbors are connected, helping count substructures and improve the expressive power.

Devise a permutation sampling strategy to minimize the complexity of covering all 2-ary deps: From $O(n^2)$ to O(n)

Graph topology:

Scan me for a full demo

unknown relationships (to be modeled)

Initial permutation:

Scan me for a full demo

Generate a new permutation:

Scan me for a full demo

O6 Permutation Sampling Strategy

06 Permutation Sampling Strategy

O6 Permutation Sampling Strategy

O6 Permutation Sampling Strategy

Model	PROTEINS	NCI1	IMDB-B	IMDB-M	COLLAB
WL	75.0 ± 3.1	86.0 ± 1.8	73.8 ± 3.9	50.9 ± 3.8	78.9 ± 1.9
DGCNN	75.5 ± 0.9	74.4 ± 0.5	70.0 ± 0.9	47.8 ± 0.9	73.8 ± 0.5
IGN	76.6 ± 5.5	74.3 ± 2.7	72.0 ± 5.5	48.7 ± 3.4	78.4 ± 2.5
GIN	76.2 ± 2.8	82.7 ± 1.7	75.1 ± 5.1	52.3 ± 2.8	80.2 ± 1.9
PPGN	77.2 ± 4.7	83.2 ± 1.1	73.0 ± 5.8	50.5 ± 3.6	80.7 ± 1.7
CLIP	77.1 ± 4.4	N/A	76.0 ± 2.7	52.5 ± 3.0	N/A
WEGL	76.5 ± 4.2	N/A	75.4 ± 5.0	52.3 ± 2.9	80.6 ± 2.0
SIN	76.5 ± 3.4	82.8 ± 2.2	75.6 ± 3.2	52.5 ± 3.0	N/A
CIN	77.0 ± 4.3	83.6 ± 1.4	75.6 ± 3.7	52.7 ± 3.1	N/A
PG-GNN (Ours)	76.8 ± 3.8	82.8 ± 1.3	76.8 ± 2.6	53.2 ± 3.6	80.9 ± 0.8

Model –	MNIST		ZINC		
	Accuracy ↑	Time / Epoch	MAE \downarrow	Time / Epoch	
GraphSAGE	97.31 ± 0.10	113.12s	0.468 ± 0.003	3.74s	
GatedGCN	97.34 ± 0.14	128.79s	0.435 ± 0.011	5.76s	
GIN	96.49 ± 0.25	39.22s	0.387 ± 0.015	2.29s	
3-WL-GNN	95.08 ± 0.96	1523.20s	0.407 ± 0.028	286.23s	
Ring-GNN	91.86 ± 0.45	2575.99s	0.512 ± 0.023	327.65s	
PPGN	N/A	N/A	0.256 ± 0.054	334.69s	
Deep-LRP	N/A	N/A	0.223 ± 0.008	72s	
PNA	97.41 ± 0.16	N/A	0.320 ± 0.032	N/A	
PG-GNN (Ours)	97.51 ± 0.07	82.60s	0.282 ± 0.011	6.92s	

- Permutation-sensitive GNNs are *more powerful* than permutation-invariant ones since they are capable of modeling the relationships among neighboring nodes and thus counting graph substructures.
- A good *approximation of the permutation-invariance* (e.g., the invariance to 2-ary dependencies) can significantly reduce the computational complexity with a minimal loss of generalization capability.
- The proposed permutation sampling strategy achieves *linear permutation sampling complexity* and is promising to be incorporated into broader design.

Going Deeper into Permutation-Sensitive Graph Neural Networks

Contact: <u>huangzhongyu2020@ia.ac.cn</u> (Zhongyu Huang) <u>huiguang.he@ia.ac.cn</u> (Huiguang He)

Preprint link: https://arxiv.org/abs/2205.14368

Code link: https://github.com/zhongyu1998/PG-GNN