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01 Introduction of Permutation-Invariance

Permutation-invariance: permutation of the nodes of the input graph does not 

affect the output.

For invariant aggregators such as SUM, we have ordering-invariance:

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥2) = 𝑓𝑓(𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥3) = 𝑓𝑓(𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥1) =

𝑓𝑓(𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1) = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3

and label-invariance:
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02 Limitation of Permutation-Invariance

The real graph structure:
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Thus fail to distinguish:
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equal statuses

They ignore the relationships among neighboring nodes.



03 More Powerful Permutation-Sensitive Aggregators

Breaking the symmetry 

of invariant aggregators:
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Thus can distinguish:What permutation-sensitive 

aggregators can see:

They can count the graph substructures such as triangles.



04 Limitation of Permutation-Sensitivity

For sensitive aggregators, they need to cover all 𝑛𝑛! possible permutations 

(node orderings) to guarantee the permutation-invariance of GNNs,

such as ordering-invariance:

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝑓𝑓(𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥2) + 𝑓𝑓(𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥3) + 𝑓𝑓(𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥1) + 

𝑓𝑓(𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥2) + 𝑓𝑓(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1) → overall invariant to {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3}

and label-invariance:
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05 Core Ideas of Reducing Complexity

Approximate the permutation-invariance: Avoid (𝑛𝑛!)

Model all 2-ary dependencies (pairwise correlations) to ensure the invariance to 

2-ary dependencies and thus approximate the permutation-invariance (invariance 

to 𝑛𝑛-ary dependencies): From (𝑛𝑛!) to  𝑛𝑛2

• Full 2-ary dependencies can also capture whether  

any two neighbors are connected, helping count 

substructures and improve the expressive power.

Devise a permutation sampling strategy to minimize the 

complexity of covering all 2-ary deps: From (𝑛𝑛2) to (𝑛𝑛)
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06 Permutation Sampling Strategy

Graph topology:
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06 Permutation Sampling Strategy

Initial permutation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)
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06 Permutation Sampling Strategy

Generate a new permutation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram
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06 Permutation Sampling Strategy

Reverse the permutation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram

𝑢𝑢5 𝑢𝑢4 𝑢𝑢3 𝑢𝑢2 𝑢𝑢1)RNN (𝑢𝑢1+
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06 Permutation Sampling Strategy

Bi-directional transformation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram

𝑢𝑢5 𝑢𝑢4 𝑢𝑢3 𝑢𝑢2 𝑢𝑢1)RNN (𝑢𝑢1+
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06 Permutation Sampling Strategy
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06 Permutation Sampling Strategy

Bi-directional transformation:
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07 Experimental Datasets

ZINCMINST

PROTEINS COLLABNCI1 IMDB



08 Experimental Results on TUDataset

Model PROTEINS NCI1 IMDB-B IMDB-M COLLAB

WL 75.0 ± 3.1 86.0 ± 1.8 73.8 ± 3.9 50.9 ± 3.8 78.9 ± 1.9
DGCNN 75.5 ± 0.9 74.4 ± 0.5 70.0 ± 0.9 47.8 ± 0.9 73.8 ± 0.5
IGN 76.6 ± 5.5 74.3 ± 2.7 72.0 ± 5.5 48.7 ± 3.4 78.4 ± 2.5
GIN 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 52.3 ± 2.8 80.2 ± 1.9
PPGN 77.2 ± 4.7 83.2 ± 1.1 73.0 ± 5.8 50.5 ± 3.6 80.7 ± 1.7
CLIP 77.1 ± 4.4 N/A 76.0 ± 2.7 52.5 ± 3.0 N/A
WEGL 76.5 ± 4.2 N/A 75.4 ± 5.0 52.3 ± 2.9 80.6 ± 2.0
SIN 76.5 ± 3.4 82.8 ± 2.2 75.6 ± 3.2 52.5 ± 3.0 N/A
CIN 77.0 ± 4.3 83.6 ± 1.4 75.6 ± 3.7 52.7 ± 3.1 N/A

PG-GNN (Ours) 76.8 ± 3.8 82.8 ± 1.3 76.8 ± 2.6 53.2 ± 3.6 80.9 ± 0.8



09 Experimental Results on Benchmark Dataset

Model
MNIST ZINC

Accuracy ↑ Time / Epoch MAE ↓ Time / Epoch
GraphSAGE 97.31 ± 0.10 113.12s 0.468 ± 0.003 3.74s
GatedGCN 97.34 ± 0.14 128.79s 0.435 ± 0.011 5.76s
GIN 96.49 ± 0.25 39.22s 0.387 ± 0.015 2.29s
3-WL-GNN 95.08 ± 0.96 1523.20s 0.407 ± 0.028 286.23s
Ring-GNN 91.86 ± 0.45 2575.99s 0.512 ± 0.023 327.65s
PPGN N/A N/A 0.256 ± 0.054 334.69s
Deep-LRP N/A N/A 0.223 ± 0.008 72s
PNA 97.41 ± 0.16 N/A 0.320 ± 0.032 N/A

PG-GNN (Ours) 97.51 ± 0.07 82.60s 0.282 ± 0.011 6.92s



10 Conclusions

• Permutation-sensitive GNNs are more powerful than permutation-invariant 

ones since they are capable of modeling the relationships among neighboring 

nodes and thus counting graph substructures.

• A good approximation of the permutation-invariance (e.g., the invariance to 

2-ary dependencies) can significantly reduce the computational complexity 

with a minimal loss of generalization capability.

• The proposed permutation sampling strategy achieves linear permutation 

sampling complexity and is promising to be incorporated into broader design.
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