Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Sajad Khodadadian June, 2022

Pranay Sharma (CMU)

Gauri Joshi (CMU)

Siva Theja Maguluri (Gatech)

Reinforcement Learning

freecodecamp.org

Reinforcement Learning

freecodecamp.org

Reinforcement Learning

Federated Reinforcement Learning

Google AI Blog

Federated Reinforcement Learning

Google AI Blog

Federated Reinforcement Learning

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

$$
Q^{\pi}(s, a)=\mathbb{E}\left\{\sum_{t=0}^{\infty} \gamma^{t} \mathcal{R}\left(S_{t}, A_{t}\right) \mid S_{0}=s, A_{0}=a, A_{t} \sim \pi\left(\cdot \mid S_{t}\right)\right\}
$$

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

$$
Q^{\pi}(s, a)=\mathbb{E}\left\{\sum_{t=0}^{\infty} \gamma^{t} \mathcal{R}\left(S_{t}, A_{t}\right) \mid S_{0}=s, A_{0}=a, A_{t} \sim \pi\left(\cdot \mid S_{t}\right)\right\}
$$

initial state

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

state at time t

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

state at time t

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

Reward function state at time t

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

Reward function state at time t

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

Reward function state at time t

- Optimal policy

$$
\pi^{*} \in \underset{\pi}{\operatorname{argmax}} Q^{\pi}(\mathrm{s}, a), \quad \forall s, a
$$

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

Reward function state at time t

- Optimal policy

$$
\pi^{*} \in \underset{\pi}{\operatorname{argmax}} Q^{\pi}(\mathrm{s}, a), \quad \forall s, a
$$

- Optimal Q-function

$$
Q^{*}(s, a) \equiv Q^{\pi^{*}}(s, a)
$$

Background on MDP Theory

- Discounted Markov Decision Process (MDP)
- Q-function

Reward function state at time t

- Optimal policy

$$
\pi^{*} \in \underset{\pi}{\operatorname{argmax}} Q^{\pi}(\mathrm{s}, a), \quad \forall s, a
$$

- Optimal Q-function

$$
Q^{*}(s, a) \equiv Q^{\pi^{*}}(s, a) \quad \longrightarrow Q \text {-learning }
$$

Vanilla Distributed Reinforcement Learning

Federated Reinforcement Learning

Federated Reinforcement Learning

Federated Reinforcement Learning

Federated Reinforcement Learning

function

Federated Reinforcement Learning

Linear Speedup in Federated Learning

- Federated Supervised Learning:

1. Linear speedup is possible [Spiridonoff, Olshevsky, Paschalidis, NeurIPS '21], [....]

Linear Speedup in Federated Learning

- Federated Supervised Learning:

1. Linear speedup is possible [Spiridonoff, Olshevsky, Paschalidis, NeurIPS '21], [....]
2. Key ingredient in these results: The noise is i.i.d.

Linear Speedup in Federated Learning

- Federated Supervised Learning:

1. Linear speedup is possible [Spiridonoff, Olshevsky, Paschalidis, NeurIPS '21], [....]
2. Key ingredient in these results: The noise is i.i.d.

$$
X_{1}, X_{2}, \ldots, X_{N} \stackrel{\text { i.i.d. }}{\sim} F_{X}(\cdot) \quad \operatorname{Var}\left(X_{i}\right)=\sigma^{2}
$$

Linear Speedup in Federated Learning

- Federated Supervised Learning:

1. Linear speedup is possible [Spiridonoff, Olshevsky, Paschalidis, NeurIPS '21], [....]
2. Key ingredient in these results: The noise is i.i.d.

$$
\begin{gathered}
X_{1}, X_{2}, \ldots, X_{N} \stackrel{\text { i.i.d. }}{\sim} F_{X}(\cdot) \quad \operatorname{Var}\left(X_{i}\right)=\sigma^{2} \\
\quad \Rightarrow \operatorname{Var}\left(\frac{\sum_{i=1}^{N} X_{i}}{N}\right)=\frac{\sigma^{2}}{N}
\end{gathered}
$$

Linear Speedup in Federated Learning

- Federated Supervised Learning:

1. Linear speedup is possible [Spiridonoff, Olshevsky, Paschalidis, NeurIPS '21], [....]
2. Key ingredient in these results: The noise is i.i.d.

$$
\begin{aligned}
& X_{1}, X_{2}, \ldots, X_{N} \stackrel{\text { i.i.d. }}{\sim} F_{X}(\cdot) \\
& \operatorname{Var}\left(X_{i}\right)=\sigma^{2} \\
& \Rightarrow \operatorname{Var}\left(\frac{\sum_{i=1}^{N} X_{i}}{N}\right)=\frac{\sigma^{2}}{N} \longrightarrow \begin{array}{c}
\text { This is the source of } \\
\text { linear speedup }
\end{array}
\end{aligned}
$$

Linear Speedup in Federated Learning

- Federated RL (TD) algorithms

1. No linear speedup [Wai '20] [Zeng, Doan, Romberg, '20]
\square In fact, they have linear penalty - but their focus is different

Linear Speedup in Federated Learning

- Federated RL (TD) algorithms

1. No linear speedup [Wai '20] [Zeng, Doan, Romberg, '20]
\square In fact, they have linear penalty - but their focus is different
2. Linear speed up under i.i.d. noise assumption [Shen, Zhang, Hong, Chen '20]
\square Based on experiments, conjectured that linear speedup is possible under Markov noise too

Linear Speedup in Federated Learning (A3C)

Convergence results of A3C with i.i.d. sampling in synthetic environment.

Convergence results of A3C with Markovian sampling in synthetic environment.
${ }^{1}$ Shen, Han, et al. "Asynchronous advantage actor critic:
Non-asymptotic analysis and linear speedup." arXiv preprint arXiv:2012.15511 (2020).

Linear Speedup in Federated Learning (A3C)'

Linear speedup is \longrightarrow established for i.i.d. noise

Convergence results of A3C with i.i.d. sampling in synthetic environment.

Convergence results of A3C with Markovian sampling in synthetic environment.
${ }^{1}$ Shen, Han, et al. "Asynchronous advantage actor critic:
Non-asymptotic analysis and linear speedup." arXiv preprint
Non-asymptotic analysis and
arXiv:2012.15511 (2020).

Linear Speedup in Federated Learning (A3C)'

Convergence results of A3C with i.i.d. sampling in synthetic environment.

A3C paper do not prove a linear speedup in the

Markovian setting

Convergence results of A3C with Markovian sampling in synthetic environment.
${ }^{1}$ Shen, Han, et al. "Asynchronous advantage actor critic: Non-asymptotic analysis and linear speedup." arXiv preprint arXiv:2012.15511 (2020).

Linear Speedup in Federated Learning (A3C) ${ }^{1}$

Convergence results of A3C with i.i.d. sampling in synthetic environment.

Convergence results of A3C with Markovian sampling in synthetic environment.
${ }^{1}$ Shen, Han, et al. "Asynchronous advantage actor critic:
1Shen, Han, et al. "Asynchronous advantage actor critic:
Non-asymptotic analysis and linear speedup." arXiv preprint Non-asymptotic analysis a
arXiv:2012.15511 (2020).

A3C paper do not prove a linear speedup in the

Markovian setting

We are the first to prove this

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,

$$
\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \tilde{\mathcal{O}}\left(\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}+\frac{\alpha}{N}+(K-1) \alpha^{2}\right)
$$

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,

$$
\left.\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \underset{\text { Convergence }}{\tilde{\mathcal{O}}\left(\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}\right.}+\frac{\alpha}{N}+(K-1) \alpha^{2}\right) .
$$

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,

$$
\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \underbrace{\tilde{\mathcal{O}}}_{\text {Convergence }} \underset{\begin{array}{c}
\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}
\end{array}}{\text { Cias }}+\underbrace{\frac{\alpha}{N}+(K-1) \alpha^{2}}_{\text {Convergence Variance }}) .
$$

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,
$\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \tilde{\mathcal{O}}(\underbrace{\left.\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}+\frac{\alpha}{N} \pm(K-1) \alpha^{2}\right) . ~ . ~ . ~ . ~}$
Convergence Convergence Variance Bias

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,

$$
\begin{aligned}
& \mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq\underbrace{\left(\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}\right.}_{\text {Convergence }}+\frac{\alpha}{N}+\underbrace{(K-1) \alpha^{2}}) . \\
& \text { Convergence Variance }
\end{aligned}
$$

Bias

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,
Higher order

$$
\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \tilde{\mathcal{O}}\left(\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}+\frac{\alpha}{N}+(K-1) \alpha^{2}\right) \text {. }
$$

Convergence Convergence Variance Bias

- If $\alpha=\mathcal{O}(\log (N T) / T)$ and $K=T / N$, we have $\mathbb{E}\left[\left\|Q_{T}-Q^{\pi}\right\|_{\infty}^{2}\right] \leq \epsilon$ within $T=\tilde{\mathcal{O}}\left(\frac{1}{N \epsilon}\right)$ iterations.

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,
Higher order

$$
\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \tilde{\mathcal{O}}\left(\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}+\frac{\alpha}{N}+(K-1) \alpha^{2}\right) .
$$

Convergence Convergence Variance Bias

- If $\alpha=\mathcal{O}(\log (N T) / T)$ and $K=T / N$, we have $\mathbb{E}\left[\left\|Q_{T}-Q^{\pi}\right\|_{\infty}^{2}\right] \leq \epsilon$ within $T=\tilde{\mathcal{O}}\left(\frac{1}{N \epsilon}\right)$ iterations.
- Total communication cost $=\frac{T}{K}=N$

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,
Higher order $\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \tilde{\mathcal{O}}\left(\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}+\frac{\alpha}{N}+(K-1) \alpha^{2}\right)$.

Convergence Convergence Variance Bias

- If $\alpha=\mathcal{O}(\log (N T) / T)$ and $K=T / N$, we have $\mathbb{E}\left[\left\|Q_{T}-Q^{\pi}\right\|_{\infty}^{2}\right] \leq \epsilon$ within $T=\tilde{\mathcal{O}}\left(\frac{1}{N \epsilon}\right)$ iterations.
- Total communication cost $=\frac{T}{K}=N$

Federated Q-learning

Theorem: Let $\mathrm{Q}_{T}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{Q}_{T}^{i}$,
Higher order

$$
\mathbb{E}\left[\left\|Q_{T}-Q^{*}\right\|_{\infty}^{2}\right] \leq \tilde{\mathcal{O}}\left(\frac{1}{\alpha}(1-\mathcal{C} \alpha)^{T}+\frac{\alpha}{N}+(K-1) \alpha^{2}\right) .
$$

Convergence Convergence Variance Bias

- If $\alpha=\mathcal{O}(\log (N T) / T)$ and $K=T / N$, we have $\mathbb{E}\left[\left\|Q_{T}-Q^{\pi}\right\|_{\infty}^{2}\right] \leq \epsilon$ within $T=\tilde{\mathcal{O}}\left(\frac{1}{N \epsilon}\right)$ iterations.
- Total communication cost $=\frac{T}{K}=N$

Proof sketch

- Single agent setting

Proof sketch

- Single agent setting
- Lyapunov type argument:

Proof sketch

- Single agent setting
- Lyapunov type argument:

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\sigma^{2} \alpha^{2}
$$

Proof sketch

- Single agent setting

Correspond to variance

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\stackrel{\overbrace{}}{\sigma^{2} \alpha^{2}}
$$

Proof sketch

- Single agent setting
- Lyapunov type argument:

Correspond to variance

$$
\begin{gathered}
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\stackrel{\sigma^{2} \alpha^{2}}{ } \\
\mathbb{E}\left[\left\|\theta_{T}\right\|^{2}\right] \leq(1-\alpha)^{T}\left\|\theta_{0}\right\|^{2}+\alpha
\end{gathered}
$$

Proof sketch

- Single agent setting
- Lyapunov type argument:

Correspond to variance

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\stackrel{\cdot}{\sigma^{2} \alpha^{2}}
$$

$$
\mathbb{E}\left[\left\|\theta_{T}\right\|^{2}\right] \leq(1-\alpha)^{T}\left\|\theta_{0}\right\|^{2}+\alpha
$$

$$
\tilde{\mathcal{O}}(1 / \epsilon) \text { sample complexity }
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

$$
\mathbb{E}\left[\left\|\theta_{T}\right\|^{2}\right] \leq(1-\alpha)^{T}\left\|\theta_{0}\right\|^{2}+\alpha / N
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\begin{gathered}
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N \\
\mathbb{E}\left[\left\|\theta_{T}\right\|^{2}\right] \leq(1-\alpha)^{T}\left\|\theta_{0}\right\|^{2}+\alpha / N
\end{gathered}
$$

$\tilde{\mathcal{O}}(1 / N \epsilon)$ iteration complexity, linear speedup

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

- However, we get

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) E\left[\left\|\theta_{t}\right\|^{2}\right]+\frac{\alpha^{2}}{N}+\alpha^{3}+\Omega_{t}
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

- However, we get

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) E\left[\left\|\theta_{t}\right\|^{2}\right]+\frac{\alpha^{2}}{N}+\underbrace{\alpha^{3}}+\Omega_{t}
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

- However, we get

$$
\begin{aligned}
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) E\left[\left\|\theta_{t}\right\|^{2}\right]+\frac{\alpha^{2}}{N}+\underbrace{\alpha^{3}}+\Omega_{t} \\
\text { Higher order } \\
\text { terms }
\end{aligned} \xrightarrow{ } \text { Not important }
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

- However, we get

$$
\begin{aligned}
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) E\left[\left\|\theta_{t}\right\|^{2}\right]+ & \frac{\alpha^{2}}{N}+\alpha^{3}+\Omega_{t}
\end{aligned} \text { Due to local updates }
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

- However, we get

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) E\left[\left\|\theta_{t}\right\|^{2}\right]+\frac{\alpha^{2}}{N}+\alpha^{\alpha^{3}+\Omega_{t}} \quad \begin{array}{cc}
\text { Due to local updates } \\
\text { Higher order } \\
\text { terms }
\end{array} \quad \begin{gathered}
\text { Handled by a special } \\
\text { weighting }
\end{gathered}
$$

Proof sketch

- Multiple agents, favorable recursion

$$
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) \mathbb{E}\left[\left\|\theta_{t}\right\|^{2}\right]+\alpha^{2} / N
$$

- However, we get

$$
\begin{array}{ll}
\mathbb{E}\left[\left\|\theta_{t+1}\right\|^{2}\right] \leq(1-\alpha) E\left[\left\|\theta_{t}\right\|^{2}\right]+\frac{\alpha^{2}}{N}+\underbrace{\alpha^{3}+\Omega_{t}} & \begin{array}{c}
\text { Due to local updates } \\
\downarrow
\end{array} \\
\begin{array}{c}
\text { Higher order } \\
\text { terms }
\end{array} & \begin{array}{c}
\text { Handled by a special } \\
\text { weighting }
\end{array} \\
(1 / N \epsilon) \text { iteration complexity, linear speedup }
\end{array} \text { Not important }
$$

Other results

1. Federated Temporal Difference with Linear Function Approximation, onpolicy data

Other results

1. Federated Temporal Difference with Linear Function Approximation, onpolicy data
2. Federated Temporal Difference, off-policy data

Other results

1. Federated Temporal Difference with Linear Function Approximation, onpolicy data
2. Federated Temporal Difference, off-policy data
3. Federated stochastic approximation with Markovian noise

Other results

1. Federated Temporal Difference with Linear Function Approximation, onpolicy data
2. Federated Temporal Difference, off-policy data
3. Federated stochastic approximation with Markovian noise

Linear speedup + Constant communication cost

Other results

1. Federated Temporal Difference with Linear Function Approximation, onpolicy data
2. Federated Temporal Difference, off-policy data
3. Federated stochastic approximation with Markovian noise

Linear speedup + Constant communication cost

THANK YOU FOR YOUR ATTENTION!

