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Question: 
Does employing 𝑁 agents result in 𝑁 times 

faster convergence (linear speedup)?

Local observations & policy
not shared with central agent
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Linear Speedup in Federated Learning 

1. Linear speedup is possible [Spiridonoff, Olshevsky, Paschalidis, NeurIPS ‘21], [….]

2. Key ingredient in these results: The noise is i.i.d.

This is the source of 
linear speedup
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• Federated RL (TD) algorithms

Linear Speedup in Federated Learning 

1. No linear speedup [Wai ’20] [Zeng, Doan, Romberg, ‘20] 

2. Linear speed up under i.i.d. noise assumption [Shen, Zhang, Hong, Chen ‘20]

q In fact, they have linear penalty – but their focus is different

q Based on experiments, conjectured that linear speedup is possible under 

Markov noise too
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Linear Speedup in Federated Learning (A3C)1

1Shen, Han, et al. "Asynchronous advantage actor critic: 
Non-asymptotic analysis and linear speedup." arXiv preprint 
arXiv:2012.15511 (2020).
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Linear Speedup in Federated Learning (A3C)1

1Shen, Han, et al. "Asynchronous advantage actor critic: 
Non-asymptotic analysis and linear speedup." arXiv preprint 
arXiv:2012.15511 (2020).

Linear speedup is 
established for i.i.d.

noise

A3C paper do not prove a 
linear speedup in the 

Markovian setting

We are the first to 
prove this
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• Lyapunov	type	argument:

𝔼 𝜃!($ / ≤ 1 − 𝛼 𝔼 𝜃! / + 𝜎/𝛼/

𝔼 𝜃+ / ≤ 1 − 𝛼 + 𝜃3 / + 𝛼

2𝒪 1/𝜖 sample complexity

Correspond	to	
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Proof sketch

• Multiple	agents,	favorable	recursion	

𝔼 𝜃!($ / ≤ 1 − 𝛼 𝔼 𝜃! / + 𝛼//𝑁

𝔼 𝜃+ / ≤ 1 − 𝛼 + 𝜃3 / + 𝛼/𝑁

2𝒪 1/𝑁𝜖 iteration complexity, linear speedup
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