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Transforming the input with  can make information previously unusable 
by model family  now usable, despite .

τ
! I(X; Y) ≥ I(τ(X); Y)

[ Xu et al., 2019 ]
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I cried tears of joy.
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 I!(X → Y) = inf
f∈!

%[−log2 f[∅](Y)]

H!(Y)

− inf
f∈!

%[−log2 f[X](Y)]

H!(Y|X)

The predictive -information framework can be used to measure the 
amount of usable information  contains about  w.r.t. . 

!
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train/"netune on null input ∅ train/"netune on actual input X

The lower the -usable information, the more 
di#cult the dataset is for .

!
!



SNLI 
[Bowman et al., 2015]

MultiNLI 
[Williams et al., 2018]

CoLA 
[Warstadt et al., 2018]

natural language inference natural language inference text classi"cation 

PREMISE: Women 
enjoying a game of table 
tennis. 

HYPOTHESIS: Women 
enjoying a game of ping 
pong.

PREMISE: The Old One 
always comforted 
Ca'daan, except today. 

HYPOTHESIS: Ca'daan 
knew the Old One very 
well.

Wash you. 

entailment

neutral

contradiction

entailment

neutral

contradiction

grammatical

ungrammatical



Compare di!erent models  by computing  
for the same , shown here for SNLI.
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decline from over-"tting



Compare different input attributes   by computing  for 
the same . 

Xi I!(Xi → Y)
Y, !
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Compare different input attributes   by computing  for 
the same . 

Xi I!(Xi → Y)
Y, !
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word order contains little usable information 

hypothesis useful even without premise 
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We can measure instance-level difficulty (w.r.t. a distribution) with 
pointwise -information (PVI), the analogue of PMI.!
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I!(X → Y ) ∈ ℝ0+; PVI(x → y) ∈ ℝ cross-epoch Pearson’s  r ≥ 0.747 cross-seed Pearson’s  r ≥ 0.877

The higher the PVI, the easier the instance is 
for  w.r.t. .! P(X, Y)



Compare different datasets  by estimating  
and  for the same  across datasets.
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same task, di!erent 
dataset, di!erent di#culty 



Compare di!erent instances  using  for the 
same , before and after transformations. 

(x, y) PVI(x → y)
!, X, Y

PREMISE: Little kids play a game of running around a pole.

HYPOTHESIS: The kids are "ghting outside.

PREMISE: A group of people watching a boy getting interviewed by a man. 

HYPOTHESIS: A group of people are sleeping on Pluto. 

11



Compare di!erent instances  using  for the 
same , before and after transformations. 

(x, y) PVI(x → y)
!, X, Y

PREMISE: Little kids play a game of running around a pole.

HYPOTHESIS: The kids are "ghting outside.

PREMISE: A group of people watching a boy getting interviewed by a man. 

HYPOTHESIS: A group of people are sleeping on Pluto. 

11



Compare di!erent instances  using  for the 
same , before and after transformations. 

(x, y) PVI(x → y)
!, X, Y

PREMISE: Little kids play a game of running around a pole.

HYPOTHESIS: The kids are "ghting outside.

PREMISE: A group of people watching a boy getting interviewed by a man. 
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hypothesis is what makes #9627 easier!
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Compare different slices  by estimating the average 
 for each slice.

{(x, y)}i
PVI(x → y)
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what BERT "nds hardest! 

Compare different slices  by estimating the average 
 for each slice.

{(x, y)}i
PVI(x → y)



Estimating the drop in -information after leaving out a token reveals 
token-level annotation artefacts.

!
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[ Gururangan et al., 2018 ]

will

John

.

and

in

0.267

0.168

0.006

-0.039

-0.050

book

is

was

of

in

2.737

2.659

2.312

2.308

1.972

Grammatical (CoLA) Ungrammatical (CoLA)



Future Work

14

Making Tougher Datasets Other Modalities

apple

time

Data Pruning



Summary: A unified framework for interpreting datasets.
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I!(X → Y ) PVI(x → y)

I!(Xi → Y ) I!(X → Y ) PVI(x → y) | (x, y) ∈ S


