# Understanding Dataset Difficulty with 7/-Usable Information



Kawin Ethayarajh





#### **ICML 2022**







Swabha Swayamdipta









#### compare datasets (X, Y)



#### compare instances (x, y)











# Transforming the input with $\tau$ can make information previously *unusable* by model family $\mathcal{V}$ now *usable*, despite $I(X; Y) \ge I(\tau(X); Y)$ .



[ Xu et al., 2019 ]

### amount of usable information X contains about Y w.r.t. $\mathcal{V}$ .

### $I_{\mathcal{V}}(X \to Y) = \inf_{f \in \mathcal{V}} \mathbb{E}[-\log_2 f[\mathcal{Q}](Y)] - \inf_{f \in \mathcal{V}} \mathbb{E}[-\log_2 f[X](Y)]$

 $H_{\mathcal{V}}(Y)$ 

[Xu et al., 2019]

The predictive  $\mathcal{V}$ -information framework can be used to measure the

 $H_{\mathcal{V}}(Y|X)$ 

### amount of usable information X contains about Y w.r.t. $\mathcal{V}$ .

$$I_{\mathcal{V}}(X \to Y) = \inf_{f \in \mathcal{V}} \mathbb{E}[-\log_2 ]$$

 $H_{\mathcal{V}}(Y)$ 

train/finetune on null input Ø

[Xu et al., 2019]

The predictive V-information framework can be used to measure the

### $f[\emptyset](Y)] - \inf_{f \in \mathscr{V}} \mathbb{E}[-\log_2 f[X](Y)]$

 $H_{\mathcal{V}}(Y|X)$ 

### amount of usable information X contains about Y w.r.t. $\mathcal{V}$ .

$$I_{\mathcal{V}}(X \to Y) = \inf_{f \in \mathcal{V}} \mathbb{E}[-\log_2 ]$$

 $H_{\mathcal{V}}(Y)$ 

train/finetune on null input  $\emptyset$ 

[Xu et al., 2019]

The predictive V-information framework can be used to measure the

### $f[\emptyset](Y)] - \inf_{f \in \mathscr{V}} \mathbb{E}[-\log_2 f[X](Y)]$ $H_{\mathcal{V}}(Y|X)$

train/finetune on actual input X

#### The predictive $\mathcal{V}$ -information framework can be used to measure the amount of usable information X contains about Y w.r.t. $\mathcal{V}$ .

#### $I_{\mathcal{V}}(X -$

[Xu et al., 2019]



SNLI

[Bowman et al., 2015]

natural language inference

**PREMISE: Women** enjoying a game of table tennis.

**HYPOTHESIS: Women** enjoying a game of ping pong.



PREMISE: The Old One always comforted Ca'daan, except today. HYPOTHESIS: Ca'daan knew the Old One very well.



entailment neutral contradiction





#### text classification







### Compare different models $\mathcal{V}$ by computing $I_{\mathcal{V}}(X \to Y)$ for the same (X, Y), shown here for SNLI.







### Compare different models $\mathcal{V}$ by computing $I_{\mathcal{V}}(X \to Y)$ for the same (X, Y), shown here for SNLI.



![](_page_13_Figure_3.jpeg)

![](_page_14_Picture_0.jpeg)

### Compare different input attributes $X_i$ by computing $I_{\mathcal{V}}(X_i \to Y)$ for the same $Y, \mathcal{V}$ .

![](_page_14_Figure_2.jpeg)

![](_page_15_Picture_0.jpeg)

### Compare different input attributes $X_i$ by computing $I_{\mathcal{V}}(X_i \to Y)$ for the same $Y, \mathcal{V}$ .

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_0.jpeg)

### Compare different input attributes $X_i$ by computing $I_{\mathcal{V}}(X_i \to Y)$ for the same $Y, \mathcal{V}$ .

![](_page_16_Figure_2.jpeg)

### We can measure instance-level difficulty (w.r.t. a distribution) with pointwise $\mathcal{V}$ -information (PVI), the analogue of PMI.

 $I_{\mathcal{V}}(X \to Y) = \mathbb{E}_{x, y \sim P(X, Y)}[\mathsf{PVI}(x \to y)]$ 

### We can measure instance-level difficulty (w.r.t. a distribution) with pointwise $\mathcal{V}$ -information (PVI), the analogue of PMI.

#### $I_{\mathcal{V}}(X \to Y) \in \mathbb{R}^{0+}; \text{ PVI}(x \to y) \in \mathbb{R}$

 $I_{\mathcal{V}}(X \to Y) = \mathbb{E}_{x, y \sim P(X, Y)}[\mathsf{PVI}(x \to y)]$ 

## We can measure instance-level difficulty (w.r.t. a distribution) with pointwise $\mathscr{V}$ -information (PVI), the analogue of PMI.

 $I_{\mathcal{V}}(X \to Y) = \mathbb{E}_{x, y \sim P(X, Y)}[\mathsf{PVI}(x \to y)]$ 

 $I_{\mathcal{V}}(X \to Y) \in \mathbb{R}^{0+}; \ \mathrm{PVI}(x \to y) \in \mathbb{R}$ 

cross-epoch Pearson's  $r \ge 0.747$ 

## We can measure instance-level difficulty (w.r.t. a distribution) with pointwise $\mathscr{V}$ -information (PVI), the analogue of PMI.

 $I_{\mathcal{V}}(X \to Y) = \mathbb{E}_{x, y \sim P(X, Y)}[\mathsf{PVI}(x \to y)]$ 

 $I_{\mathcal{V}}(X \to Y) \in \mathbb{R}^{0+}; \ \mathrm{PVI}(x \to y) \in \mathbb{R}$ 

cross-epoch Pearson's  $r \ge 0.747$ 

cross-seed Pearson's  $r \ge 0.877$ 

#### We can measure instance-level difficulty (w.r.t. a distribution) with pointwise V-inf The higher the PVI, the easier the instance is

$$I_{\mathcal{V}}(X \to Y) = \mathbb{E}_{x, y \sim P(X, Y)}[\mathsf{PVI}(x \to y)]$$

 $I_{\mathcal{V}}(X \to Y) \in \mathbb{R}^{0+}; \text{ PVI}(x \to y) \in \mathbb{R}$ 

cross-epoch Pearson's  $r \ge 0.747$ 

for  $\mathcal{V}$  w.r.t. P(X, Y).

cross-seed Pearson's  $r \ge 0.877$ 

![](_page_22_Picture_0.jpeg)

### Compare different datasets (X, Y) by estimating $I_{\mathcal{V}}(X \to Y)$ and $PVI(x \to y)$ for the same $\mathcal{V}$ across datasets.

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

### Compare different datasets (X, Y) by estimating $I_{\mathcal{V}}(X \to Y)$ and $PVI(x \to y)$ for the same $\mathcal{V}$ across datasets.

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

#### Compare different instances (x, y) using $PVI(x \rightarrow y)$ for the same $\mathcal{V}, X, Y$ , before and after transformations.

PREMISE: Little kids play a game of running around a pole.

HYPOTHESIS: The kids are fighting outside.

PREMISE: A group of people watching a boy getting interviewed by a man.

HYPOTHESIS: A group of people are sleeping on Pluto.

## **Compare different instances** (x, y) using PVI $(x \rightarrow y)$ for the same $\mathcal{V}, X, Y$ , before and after transformations.

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

HYPOTHESIS: The kids are fighting outside.

PREMISE: A group of people watching a boy getting interviewed by a man.

HYPOTHESIS: A group of people are sleeping on Pluto.

# **Compare different instances** (x, y) using PVI $(x \rightarrow y)$ for the same $\mathcal{V}, X, Y$ , before and after transformations.

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

# Compare different slices $\{(x, y)\}_i$ by estimating the average $PVI(x \rightarrow y)$ for each slice.

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_0.jpeg)

# Compare different slices $\{(x, y)\}_i$ by estimating the average $PVI(x \rightarrow y)$ for each slice.

![](_page_28_Figure_2.jpeg)

### Estimating the drop in $\mathcal{V}$ -information after leaving out a token reveals token-level annotation artefacts.

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_30_Picture_0.jpeg)

Making Tougher Datasets

![](_page_30_Figure_3.jpeg)

![](_page_30_Picture_4.jpeg)

#### Summary: A unified framework for interpreting datasets.

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_5.jpeg)

![](_page_31_Picture_6.jpeg)