

Jul 17–23, 2022

Uncertainty Modeling in Generative Compressed Sensing

Yilang Zhang

School of Data Science, Fudan University

Acknowledgements: Mengchu Xu, Prof. Xiaojun Mao, and Prof. Jian Wang* NSFC grants 12001109, 92046021, 61971146

Inverse problems

Goal: recover signal $\mathbf{x} \in \mathbb{R}^n$ from compressed linear measurements

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ $\mathbf{A} \in \mathbb{R}^{m imes n} \ (m \ll n)$

Inverse problems

Goal: recover signal $\mathbf{x} \in \mathbb{R}^n$ from compressed linear measurements

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ $\mathbf{A} \in \mathbb{R}^{m imes n} \ (m \ll n)$

Applications: data compression, MRI, super-resolution, ...

Inverse problems

Goal: recover signal $\mathbf{x} \in \mathbb{R}^n$ from compressed linear measurements

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ $\mathbf{A} \in \mathbb{R}^{m imes n} \ (m \ll n)$

Applications: data compression, MRI, super-resolution, ...

underdetermined system > need additional priors to ensure unique solution

Inverse problems

Goal: recover signal $\mathbf{x} \in \mathbb{R}^n$ from compressed linear measurements

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ $\mathbf{A} \in \mathbb{R}^{m imes n}$ $(m \ll n)$

Applications: data compression, MRI, super-resolution, ...

underdetermined system > need additional priors to ensure unique solution

- Compressed sensing with sparsity prior
 - Sparsity prior $\|\mathbf{x}\|_0 \leq K$
 - ✓ natural signals are nearly sparse in some transform domains, e.g. Fourier, wavelet

Inverse problems

Goal: recover signal $\mathbf{x} \in \mathbb{R}^n$ from compressed linear measurements

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ $\mathbf{A} \in \mathbb{R}^{m imes n}$ $(m \ll n)$

Applications: data compression, MRI, super-resolution, ...

underdetermined system > need additional priors to ensure unique solution

- Compressed sensing with sparsity prior
 - Sparsity prior $\|\mathbf{x}\|_0 \leq K$
 - ✓ natural signals are nearly sparse in some transform domains, e.g. Fourier, wavelet

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0, \text{ s.t. } \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

> solve via greedy algorithms or convex relaxation

Inverse problems

Goal: recover signal $\mathbf{x} \in \mathbb{R}^n$ from compressed linear measurements

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ $\mathbf{A} \in \mathbb{R}^{m imes n}$ $(m \ll n)$

Applications: data compression, MRI, super-resolution, ...

underdetermined system > need additional priors to ensure unique solution

- Compressed sensing with sparsity prior
 - Sparsity prior $\|\mathbf{x}\|_0 \leq K$
 - ✓ natural signals are nearly sparse in some transform domains, e.g. Fourier, wavelet

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0, \text{ s.t. } \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

> solve via greedy algorithms or convex relaxation

Limitation: x is not strictly sparse > inaccurate recovery results

Compressed sensing with generative models (CSGM)

Key idea: learn more accurate priors in a data-driven way

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, "Compressed Sensing using Generative Models," *Proceedings of the* 34th International Conference on Machine Learning, 2017.

□ Compressed sensing with generative models (CSGM)

Key idea: learn more accurate priors in a data-driven way

S1. Pre-train a generator (GAN) / decoder (VAE) using training signals $\mathbf{X}_{\mathrm{tr}} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$

 $\mathbf{g}(\mathbf{z}; \hat{oldsymbol{ heta}}): \mathbb{R}^k \mapsto \mathbb{R}^n$

latent variables $\mathbf{z} \in \mathbb{R}^k$ $(k \ll n)$ with prior $\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}_k)$

output signals that resemble the training ones

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, "Compressed Sensing using Generative Models," *Proceedings of the* 34th International Conference on Machine Learning, 2017.

Compressed sensing with generative models (CSGM)

Key idea: learn more accurate priors in a data-driven way

S1. Pre-train a generator (GAN) / decoder (VAE) using training signals $\mathbf{X}_{\mathrm{tr}} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$

 $\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}) : \mathbb{R}^k \mapsto \mathbb{R}^n$

latent variables $\mathbf{z} \in \mathbb{R}^k$ $(k \ll n)$ with prior $\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}_k)$

- output signals that resemble the training ones
- S2. Optimize latent variable to minimize the loss

$$\hat{\mathbf{z}} = \underset{\mathbf{z}}{\arg\min} \|\mathbf{Ag}(\mathbf{z}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_{2}^{2} + \lambda_{\mathbf{z}} \|\mathbf{z}\|_{2}^{2} \quad \begin{array}{c} \text{relative} \\ \text{weight } \lambda_{\mathbf{z}} \end{array}$$

and then reconstruct

 $\hat{\mathbf{x}} = \mathbf{g}(\hat{\mathbf{z}}; \hat{oldsymbol{ heta}})$

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, "Compressed Sensing using Generative Models," *Proceedings of the* 34th International Conference on Machine Learning, 2017.

Compressed sensing with generative models (CSGM)

Key idea: learn more accurate priors in a data-driven way

S1. Pre-train a generator (GAN) / decoder (VAE) using training signals $\mathbf{X}_{\mathrm{tr}} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$

 $\mathbf{g}(\mathbf{z}; \hat{oldsymbol{ heta}}): \mathbb{R}^k \mapsto \mathbb{R}^n$ late

latent variables $\mathbf{z} \in \mathbb{R}^k$ $(k \ll n)$ with prior $\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}_k)$

- output signals that resemble the training ones
- S2. Optimize latent variable to minimize the loss

$$\hat{\mathbf{z}} = \underset{\mathbf{z}}{\arg\min} \|\mathbf{Ag}(\mathbf{z}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_{2}^{2} + \lambda_{\mathbf{z}} \|\mathbf{z}\|_{2}^{2} \quad \text{relative} \\ \text{weight } \lambda_{\mathbf{z}}$$

and then reconstruct

$$\hat{\mathbf{x}} = \mathbf{g}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}})$$

✓ Bounded reconstruction error for x inside the range $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}})) := {\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}) | \mathbf{z} \in \mathbb{R}^k}$

$$\gamma \| \hat{\mathbf{x}} - \mathbf{x} \|_2 - \epsilon \le \| \mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y} \|_2 \qquad \underset{\gamma, \epsilon}{\text{constants}}$$

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, "Compressed Sensing using Generative Models," *Proceedings of the* 34th International Conference on Machine Learning, 2017.

Compressed sensing with generative models (CSGM)

Key idea: learn more accurate priors in a data-driven way

S1. Pre-train a generator (GAN) / decoder (VAE) using training signals $\mathbf{X}_{\mathrm{tr}} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$

 $\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}) : \mathbb{R}^k \mapsto \mathbb{R}^n$

latent variables $\mathbf{z} \in \mathbb{R}^k$ $(k \ll n)$ with prior $\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}_k)$

relative weight λ_z

 $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{oldsymbol{ heta}})$

- output signals that resemble the training ones
- S2. Optimize latent variable to minimize the loss

 $\hat{\mathbf{z}} = \arg\min_{\mathbf{z}} \|\mathbf{Ag}(\mathbf{z}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_{2}^{2} + \lambda_{\mathbf{z}} \|\mathbf{z}\|_{2}^{2}$

and then reconstruct

$$\hat{\mathbf{x}} = \mathbf{g}(\hat{\mathbf{z}}; \hat{\boldsymbol{ heta}})$$

✓ Bounded reconstruction error for x inside the range $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}})) := {\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}) | \mathbf{z} \in \mathbb{R}^k}$

$$\gamma \| \hat{\mathbf{x}} - \mathbf{x} \|_2 - \epsilon \le \| \mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y} \|_2 \qquad \underset{\gamma, \epsilon}{\text{constants}}$$

• Inferior performance when $\mathbf{x} \notin \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, "Compressed Sensing using Generative Models," *Proceedings of the* 34th International Conference on Machine Learning, 2017.

Key idea: deterministic $\hat{\theta}$ leads to fixed range $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\theta})) \rightarrow \text{model uncertainties in } \theta$

Key idea: deterministic $\hat{\theta}$ leads to fixed range $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\theta})) \rightarrow \text{model uncertainties in } \theta$

 \checkmark Uncertainties come from distributional difference between \mathbf{X}_{tr} and \mathbf{x}

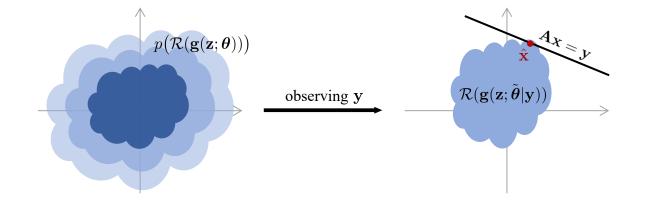
Key idea: deterministic $\hat{\theta}$ leads to fixed range $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\theta})) \rightarrow \text{model uncertainties in } \theta$

- \checkmark Uncertainties come from distributional difference between ${\bf X}_{\rm tr}$ and ${\bf x}$
- □ Compressed sensing with Bayesian generative models (CS-BGM)
 - Model $p(\theta; \mathbf{X}_{tr}) = \mathcal{N}(\theta; \hat{\theta}, \lambda \mathbf{I})$ > allow for slight adjustment of θ



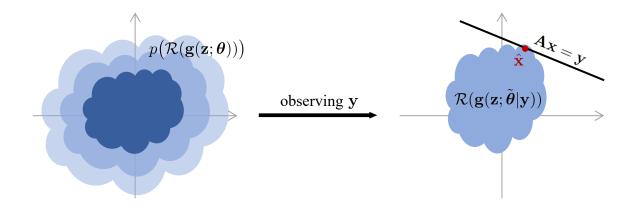
Key idea: deterministic $\hat{\theta}$ leads to fixed range $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\theta})) \rightarrow \text{model uncertainties in } \theta$

- \checkmark Uncertainties come from distributional difference between ${\bf X}_{\rm tr}$ and ${\bf x}$
- Compressed sensing with Bayesian generative models (CS-BGM)
 - Model $p(\theta; \mathbf{X}_{tr}) = \mathcal{N}(\theta; \hat{\theta}, \lambda \mathbf{I})$ > allow for slight adjustment of θ
 - Prediction $\mathbb{E}[\mathbf{x}|\mathbf{y}; \mathbf{X}_{tr}] = \mathbb{E}_{p(\mathbf{z}, \boldsymbol{\theta}|\mathbf{y}; \mathbf{X}_{tr})}[\mathbf{g}(\mathbf{z}; \boldsymbol{\theta})]$



Key idea: deterministic $\hat{\theta}$ leads to fixed range $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\theta})) \rightarrow \text{model uncertainties in } \theta$

- \checkmark Uncertainties come from distributional difference between ${\bf X}_{\rm tr}$ and ${\bf x}$
- Compressed sensing with Bayesian generative models (CS-BGM)
- Model $p(\theta; \mathbf{X}_{tr}) = \mathcal{N}(\theta; \hat{\theta}, \lambda \mathbf{I})$ > allow for slight adjustment of θ
- Prediction $\mathbb{E}[\mathbf{x}|\mathbf{y}; \mathbf{X}_{\mathrm{tr}}] = \mathbb{E}_{p(\mathbf{z}, \boldsymbol{\theta}|\mathbf{y}; \mathbf{X}_{\mathrm{tr}})}[\mathbf{g}(\mathbf{z}; \boldsymbol{\theta})]$
- Solve for $p(\mathbf{z}, \boldsymbol{\theta} | \mathbf{y}; \mathbf{X}_{tr})$ via alternating optimization
 - \circ maximum a posteriori (MAP) for high-dimensional heta
 - \circ variational inference (VI) for low-dimensional $\, {\bf z}$



- Necessary condition for generator range
 - ✓ (Bora et al'17) If $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$, small reconstruction error can be achieved

S-REC: $\gamma \|\hat{\mathbf{x}} - \mathbf{x}\|_2 - \epsilon \le \|\mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_2$

- Necessary condition for generator range
 - ✓ (Bora et al'17) If $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$, small reconstruction error can be achieved

S-REC: $\gamma \|\hat{\mathbf{x}} - \mathbf{x}\|_2 - \epsilon \le \|\mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_2$

Q. But... how can we know when $\mathbf{x} \notin \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$?

- Necessary condition for generator range
 - ✓ (Bora et al'17) If $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$, small reconstruction error can be achieved

S-REC: $\gamma \|\hat{\mathbf{x}} - \mathbf{x}\|_2 - \epsilon \le \|\mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_2$

Q. But... how can we know when $\mathbf{x} \notin \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$?

- Sufficient condition for generator range
 - ✓ (Ours) $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$ only if small measurement error can be achieved

S-RIP:
$$\sqrt{1-\delta} \|\hat{\mathbf{x}} - \mathbf{x}\|_2 + \epsilon \le \|\mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_2 \le \sqrt{1+\delta} \|\hat{\mathbf{x}} - \mathbf{x}\|_2 + \epsilon$$
 constants

Y. Zhang, M. Xu, X. Mao, and J. Wang, "Uncertainty Modeling in Generative Compressed Sensing," *Proceedings of the* 39th International Conference on Machine Learning, 2022.

- Necessary condition for generator range
- ✓ (Bora et al'17) If $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$, small reconstruction error can be achieved

S-REC: $\gamma \| \hat{\mathbf{x}} - \mathbf{x} \|_2 - \epsilon \le \| \mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y} \|_2$

Q. But... how can we know when $\mathbf{x} \notin \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$?

- Sufficient condition for generator range
 - ✓ (Ours) $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$ only if small measurement error can be achieved

S-RIP: $\sqrt{1-\delta} \|\hat{\mathbf{x}} - \mathbf{x}\|_2 + \epsilon \le \|\mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_2 \le \sqrt{1+\delta} \|\hat{\mathbf{x}} - \mathbf{x}\|_2 + \epsilon$ constants δ, ϵ

> Otherwise, adjust $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$ to include \mathbf{x}

Y. Zhang, M. Xu, X. Mao, and J. Wang, "Uncertainty Modeling in Generative Compressed Sensing," *Proceedings of the* 39th International Conference on Machine Learning, 2022.

- Necessary condition for generator range
- ✓ (Bora et al'17) If $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$, small reconstruction error can be achieved

S-REC: $\gamma \|\hat{\mathbf{x}} - \mathbf{x}\|_2 - \epsilon \le \|\mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_2$

- **Q.** But... how can we know when $\mathbf{x} \notin \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$?
- Sufficient condition for generator range
 - ✓ (Ours) $\mathbf{x} \in \mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$ only if small measurement error can be achieved

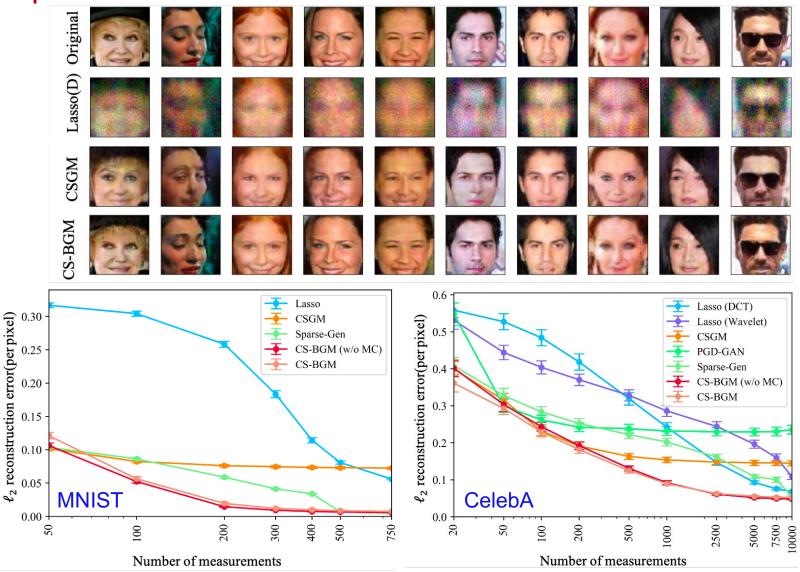
S-RIP:
$$\sqrt{1-\delta} \|\hat{\mathbf{x}} - \mathbf{x}\|_2 + \epsilon \le \|\mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\|_2 \le \sqrt{1+\delta} \|\hat{\mathbf{x}} - \mathbf{x}\|_2 + \epsilon$$
 constants δ, ϵ

> Otherwise, adjust $\mathcal{R}(\mathbf{g}(\mathbf{z}; \hat{\boldsymbol{\theta}}))$ to include \mathbf{x}

Original	CSGM	CS-BGM			
23				CSGM	CS-BGM
			Measurement error $\frac{1}{n} \ \mathbf{Ag}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{y}\ _2^2$:	1.073	0.047
			Reconstruction error $\frac{1}{n} \ \mathbf{g}(\hat{\mathbf{z}}; \hat{\boldsymbol{\theta}}) - \mathbf{x} \ _2^2$:	0.0137	0.0044

Experiments

Experiments



Experiments

