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Mean estimation under local differential privacy

𝑣1 𝑣2 𝑣𝑛
⋯ 𝑣𝑖 ∈ R𝑑

||𝑣𝑖||2 = 1

Goal: estimate the mean  
1

𝑛
σ𝑖=1
𝑛 𝑣𝑖 under local differential privacy

Why: 1. Building histograms

2. Training ML models



Mean estimation under local differential privacy

𝑣1 𝑣2 𝑣𝑛
⋯

𝑣𝑖 ∈ R𝑑

||𝑣𝑖||2 = 1

𝑆𝑒𝑟𝑣𝑒𝑟

𝑅

ො𝑣

𝑅 𝑅⋯
𝑹 is 𝜺-differentially private (𝜺-DP) 

For every 𝑣, 𝑣′ and 𝑢: 

𝑃(𝑅 𝑣 = 𝑢)

𝑃(𝑅 𝑣′ = 𝑢)
≤ 𝑒𝜀

Goal: output ෝ𝒗 such that:

1. unbiased:     E ෝ𝒗 =
1

𝑛
σ𝑖=1
𝑛 𝑣𝑖

2. Min. variance: E[|| ො𝑣 −
1

𝑛
σ𝑖=1
𝑛 𝑣𝑖 ||2

2]



Error of a protocol

• Error for randomizer R and server aggregator A:

𝐸𝑟𝑟(𝐴, 𝑅) = max
𝑣1,…,𝑣𝑛∈𝑅

𝑑
𝐸 || 𝐴 𝑅 𝑣1 , … , 𝑅 𝑣𝑛 −

1

𝑛


𝑖=1

𝑛

𝑣𝑖 ||2
2

• Minimax error:

E𝑟𝑟⋆ 𝑛, 𝑑, 𝜀 = min
𝑅,𝐴

𝐸𝑟𝑟(𝐴, 𝑅)



Prior results

• Minimax rates are known asymptotically [DJW18, BDFKR18, DR18]:

E𝑟𝑟⋆ 𝑛, 𝑑, 𝜀 = Θ
𝑑

𝑛 𝜀

• Completely solved?

• Many (asymptotically) optimal algorithms exists [DJW18, BDFKR18, CKO20, FT21]

• Significant gaps in practice



Prior results

• Minimax rates are known asymptotically [DJW18, BDFKR18, DR18]:

E𝑟𝑟⋆ 𝑛, 𝑑, 𝜀 = Θ
𝑑

𝑛 𝜀

• Completely solved?

• Many (asymptotically) optimal algorithms exists [DJW18, BDFKR18, CKO20, FT21]

• Significant gaps in practice

What is the optimal algorithm for mean 

estimation under local DP?



Main results

1. The optimal (unbiased) randomizer is an instance of PrivUnit
• Optimal parameters can be found analytically

2. PrivUnitG: a Gaussian version of PrivUnit
• Easier to analyze ➔ easier to find optimal parameters

• Allows to estimate constants of minimax error:

E𝑟𝑟⋆ 𝑛, 𝑑, 𝜀 = c𝑑,𝜀 ⋅
𝑑

𝑛 𝜀



PrivUnit [BDFKR18]

• Input: unit vector 𝑣 ∈ 𝑅𝑑

𝑣



PrivUnit [BDFKR18]

• Input: unit vector 𝑣 ∈ 𝑅𝑑

𝑣

𝛾

with probability 𝑝

with probability 1 − 𝑝

• Input: unit vector 𝑣 ∈ 𝑅𝑑



PrivUnit [BDFKR18]

𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡 𝑣 = 𝐶 ⋅ ൜
𝑈𝑛𝑖𝑓 𝑢: 𝑢, 𝑣 ≥ 𝛾 𝑤. 𝑝. 𝑝

𝑈𝑛𝑖𝑓 𝑢: 𝑢, 𝑣 < 𝛾 𝑤. 𝑝. 1 − 𝑝



• Unbiased: 𝐸 𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡 𝑣 = 𝐶 ⋅ 𝑣

Idea: 1. 𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡 depends only on inner products with 𝑣

2. if 𝑢 , 𝑣 = 0 then −𝑢 , 𝑣 = 0

• Privacy:

Idea:

2. Ratio between densities is bounded

1. 𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡 probability density has two possible values

𝜀 = ln
𝑝/(1 − 𝑞)

1 − 𝑝 /𝑞
𝑞 = 𝑃𝑈∼𝑈𝑛𝑖𝑓 𝑈, 𝑣 ≤ 𝛾

PrivUnit [BDFKR18]



Optimality of PrivUnit

Theorem [A., Feldman, Talwar 22].

For any 𝑑 and 𝜀, there is 𝑝⋆ and 𝛾⋆ such that PrivUnit achieves the 
optimal mean squared error amongst all unbiased protocols. 

E𝑟𝑟 𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡𝑝⋆,𝛾⋆ , 𝐴
+ ≤ 𝐸𝑟𝑟(𝑅, 𝐴)

For any 𝜀-DP randomizer R and server aggregator A that is unbiased:

Additive aggregation: 𝐴+ 𝑅 𝑣1 , … , 𝑅 𝑣𝑛 =
1

𝑛


𝑖=1

𝑛

𝑅 𝑣𝑖



Proof idea

Step 1: optimal randomizer 𝑅 has output space 𝑅𝑑 and is unbiased

Step 2: PrivUnit is optimal amongst real-valued randomizers



Proof idea

Step 1: optimal randomizer 𝑅 has output space 𝑅𝑑 and is unbiased

Idea: use the server aggregation with fake inputs to transform the output space

𝑅 𝑣 = 𝐸 𝐴(𝑅 𝑣 , 𝑅(𝑣2
′ ), … , 𝑅 𝑣𝑛

′ )

𝑣2
′ , … , 𝑣𝑛

′ are iid uniform over the sphere



Step 2: PrivUnit is optimal amongst real-valued randomizers

Idea:

prove several structural properties of the optimal algorithm

→

Optimal algorithm is an instance of 𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡



1. Rotational symmetry: 𝑅 𝑣 and 𝑅 𝑣′ are the same up to rotations  

➔ Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer:  

min 

𝑗=1

𝑀

𝑝𝑗||𝑢𝑗 − 𝑣||2
2

s. 𝑡.

𝑒−𝜀 ≤
𝑝𝑗

𝑝𝑗′
≤ 𝑒𝜀

probability distribution

unbiased

privacy

σ𝑗=1
𝑀 𝑝𝑗 = 1 , 𝑝𝑗 ≥ 0


𝑗=1

𝑀

𝑢𝑗𝑝𝑗 = 𝑣

Step 2: PrivUnit is optimal amongst real-valued randomizers

𝑝𝑗 = 𝑃(𝑅 𝑣 = 𝑢𝑗)



1. Rotational symmetry: 𝑅 𝑣 and 𝑅 𝑣′ are the same up to rotations  

➔ Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer:  

min 

𝑗=1

𝑀

𝑝𝑗||𝑢𝑗 − 𝑣||2
2

s. 𝑡.

𝑒−𝜀 ≤
𝑝𝑗

𝑝𝑗′
≤ 𝑒𝜀➔

1 ≤
𝑝𝑗

𝑝
≤ 𝑒𝜀

probability distribution

unbiasedness

privacy

σ𝑗=1
𝑀 𝑝𝑗 = 1 , 𝑝𝑗 ≥ 0


𝑗=1

𝑀

𝑢𝑗𝑝𝑗 = 𝑣

Step 2: PrivUnit is optimal amongst real-valued randomizers

Key Lemma

𝑅 is symmetric 𝜀-DP local randomizer   iff 1 ≤
p 𝑅 𝑣 =𝑢

𝐩
≤ 𝑒𝜀

𝑝𝑗 = 𝑃(𝑅 𝑣 = 𝑢𝑗)



1. Rotational symmetry: 𝑅 𝑣 and 𝑅 𝑣′ are the same up to rotations  

➔ Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer:  

min 

𝑗=1

𝑀

𝑝𝑗||𝑢𝑗 − 𝑣||2
2

s. 𝑡. σ𝑗=1
𝑀 𝑝𝑗 = 1 , 𝑝𝑗 ≥ 0

1 ≤
𝑝𝑗

𝑝
≤ 𝑒𝜀


𝑗=1

𝑀

𝑢𝑗𝑝𝑗 = 𝑣

probability distribution

unbiased

privacy

𝑝𝑗 ∈ 1, 𝑒𝜀 ⋅ 𝑝

M linearly independent 
constraints must be 
satisfied

Step 2: PrivUnit is optimal amongst real-valued randomizers

𝑝𝑗 = 𝑃(𝑅 𝑣 = 𝑢𝑗)



Step 2: PrivUnit is optimal amongst real-valued randomizers

1. Rotational symmetry: 𝑅 𝑣 and 𝑅 𝑣′ are the same up to rotations  

➔ Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer 

➔ Optimal randomizer has two values for the density: 

𝑃 𝑅 𝑣 = 𝑢𝑗 ∈ 1, 𝑒𝜀 ⋅ 𝑝



Step 2: PrivUnit is optimal amongst real-valued randomizers

1. Rotational symmetry: 𝑅 𝑣 and 𝑅 𝑣′ are the same up to rotations  

➔ Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer 

➔ Optimal randomizer has two values for the density: 

𝑃 𝑅 𝑣 = 𝑢𝑗 ∈ 1, 𝑒𝜀 ⋅ 𝑝

3. u1
T𝑣 > u2

T𝑣 implies 𝑃 𝑅 𝑣 = 𝑢1 ≥ 𝑃 𝑅 𝑣 = 𝑢2
- Otherwise can improve the error

Instance of PrivUnit



PrivUnitG

Idea: approximate the uniform distribution in PrivUnit using Gaussian

𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡 𝑣 = 𝐶 ⋅ ൜
𝑈 | 𝑈, 𝑣 ≥ 𝛾 𝑤. 𝑝. 𝑝

𝑈 | 𝑈, 𝑣 < 𝛾 𝑤. 𝑝. 1 − 𝑝

Let 𝑈 ∼ 𝑈𝑛𝑖𝑓 𝑢 ∈ R𝑑 ∶ ||𝑢||2 = 1

𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡𝐺 𝑣 = 𝐶 ⋅ ൜
𝑊 | 𝑊, 𝑣 ≥ 𝛾 𝑤. 𝑝. 𝑝

𝑊 | 𝑊, 𝑣 < 𝛾 𝑤. 𝑝. 1 − 𝑝

Let 𝑊 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0,
1

𝑑
Easier to analyze



Implications

Optimal hyperparameters are independent of dimension

Error of PrivUnitG is at most 1 +
1

𝑑
⋅ Error of PrivUnit

E𝑟𝑟⋆ 𝑛, 𝑑, 𝜀 = c𝑑,𝜀 ⋅
𝑑

𝑛 𝜀

Allows to estimate constants of the optimal squared error

lim
𝜀→∞

lim
𝑑→∞

𝑐𝑑,𝜀 = 𝑐⋆ ≈ 0.614

𝐸𝑟𝑟 𝑜𝑓 𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡𝐺

𝐸𝑟𝑟 𝑜𝑓 𝑃𝑟𝑖𝑣𝑈𝑛𝑖𝑡



Thanks!


