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Mean estimation under local differential privacy
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Goal: estimate the mean ~ *_ . v; under local differential privacy

Why 1. Building histograms

2. Training ML models



Mean estimation under local differential privacy
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Error of a protocol

* Error for randomizer R and server aggregator A:

Err(A,R) = max dE | A(R(vl),...,R(vn)) —%z V; ||%]

V1,.--VUn€R

1=1

* Minimax error:

Err*(n,d, &) = rEiAn Err(A,R)



Prior results

* Minimax rates are known asymptotically [piw1s, BDFKR18, DR18]:

d
Err*(n,d,e) =0 (—)
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* Completely solved?
* Many (asymptotically) optimal algorithms exists [piw18, BDFKR18, CK020, FT21]

* Significant gaps in practice



Prior results
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What is the optimal algorithm for mean
estimation under local DP?



Main results

1. The optimal (unbiased) randomizer is an instance of PrivUnit
e Optimal parameters can be found analytically

2. PrivUnitG: a Gaussian version of PrivUnit
 Easier to analyze =@ easier to find optimal parameters
* Allows to estimate constants of minimax error:

Err*(n,d,e) = c4¢ ° .



PrivUnit [BpFkr1g]

* Input: unit vector v € R4




PrivUnit [BpFkr1g]

* Input: unit vector v € R% with probability p

with probability 1 —p



PrivUnit [BpFkr1g]

with probability p

with probability 1 — p

Unif {u: (u,v) =y} W.p. p

PrivUnit(v) = C- {Unif{u: (u,v) <) w.p.1-p



PrivUnit [BpFkr1g]

e Unbiased: E[PrivUnit(v)]=C - v

Idea: 1.PrivUnit depends only on inner products with v

2.if(u,v) =0then{(—u,v) =0

* Privacy: e =In (2(91/(_1;)79 q = Py-ynir((U,v) < 7)

with probability p

Idea: 1. privUnit probability density has two possible values winprobabiiy 1 -5

2. Ratio between densities is bounded




Optimality of PrivUnit

Theorem [A., Feldman, Talwar 22].

For any d and ¢, there is p™ and y* such that PrivUnit achieves the
optimal mean squared error amongst all unbiased protocols.

For any e-DP randomizer R and server aggregator A that is unbiased:

Err(PrivUnitys,+ AT) < Err(R, A)

f

n
1
Additive aggregation:  AT(R(vy), ..., R(v,)) = gz R(v;)
i=1



Proof idea

Step 1: optimal randomizer R has output space R% and is unbiased

Step 2: PrivUnit is optimal amongst real-valued randomizers



Proof idea

Step 1: optimal randomizer R has output space R% and is unbiased

Idea: use the server aggregation with fake inputs to transform the output space

R(w) = E[ARR(v),R(v3), ..., R(vp))]

V3, ..., Uy, are iid uniform over the sphere



Step 2: PrivUnit is optimal amongst real-valued randomizers

Idea:

prove several structural properties of the optimal algorithm

\%

Optimal algorithm is an instance of PrivUnit



Step 2: PrivUnit is optimal amongst real-valued randomizers

1. Rotational symmetry: R(v) and R(v") are the same up to rotations

=>» Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer: p; = P(R(v) = )
M
: 2
min )yl vll3
j=1
s. L. 9’4=1Pj =1,p; =0 probability distribution
M
z_ ujp;j = v unbiased
j=1
e ¢ < 2] < et privacy
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Step 2: PrivUnit is optimal amongst real-valued randomizers

1. Rotational symmetry: R(v) and R(v") are the same up to rotations

=>» Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer: pj = P(R(v) = ;)

M
. 2
min )yl vll3
j=1

Key Lemma

: : : : R(v)=
R is symmetric €-DP local randomizer iff 1 < b (Z) W < e®
1< Py < ef & e ¢ < P < e® privacy

p p]/



Step 2: PrivUnit is optimal amongst real-valued randomizers

1. Rotational symmetry: R(v) and R(v") are the same up to rotations

=» Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer: p; = P(R(v) = u;)

M
: 2
min ) pyllu; — vll3
j=1

p; €{1,e¢}-p <: . L. %1 pi=1,p; =0 probability distribution
] )

M
M linearly independent z Ujpj = v unbiased
constraints must be j=1

satisfied

1< & < ¢ privacy
p



Step 2: PrivUnit is optimal amongst real-valued randomizers

1. Rotational symmetry: R(v) and R(v") are the same up to rotations

=» Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer

=» Optimal randomizer has two values for the density:

P(R(v) = uj) €{l,et} p



Step 2: PrivUnit is optimal amongst real-valued randomizers

1. Rotational symmetry: R(v) and R(v") are the same up to rotations

=» Enough to study the randomizer for a fixed v

2. Linear program formulation of the best randomizer Instance of PrivUnit

=» Optimal randomizer has two values for the density:
P(R(v) = uj) €{l,et} p .

3.ulv > ulv implies P(R(v) =u;) = P(R(v) = u,)

- Otherwise can improve the error

_/



PrivUnitG

Idea: approximate the uniform distribution in PrivUnit using Gaussian

Let U ~ Unif{u € R* : ||u||, = 1}

U|U,v)y=y W.p. p

PrivUnit(v) = C - {U (U.v) < v wop.l—p

Let W ~ Normal (O, %)

Easier to analyze
W|W,v)=>y W.p. p y

PrivUnitG(v) = C {W | (W,v) < y w.p.1—p



Implications
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Thanks!



