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Motivation
stochastic gradient descent (SGD) is an efficient optimization method 
behind the success of deep learning

SGD is beneficial to generalization: SGD prefers flat minima

Many previous studies (if not all) assume that the SGD noise is uniform
It has been pointed out that anisotropy of the SGD noise is important

Understanding SGD is crucial for our understanding of deep learning

Our work: SGD noise strength depends on the position in the parameter 
space, which gives rise to the power-law escape rate from local minima
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Setup

θk+1 = θk − η∇LBk
(θk)SGD iteration

continuous time kη → t ∈ ℝ

Itô stochastic differential equation (SDE)

dθt = − ∇L(θt)dt + Σ(θt) ⋅ dWt

LBk
(θ) =

1
B ∑

μ∈Bk

ℓμ(θ)
: mini-batch sizeB

: learning rateη

: SGD noise covariance matrixΣ(θ)
: Wiener process (Brownian motion)Wt

mean-squared error ℓμ =
1
2

( f(θ, x(μ)) − y(μ))2

input x(μ) label y(μ)

network output f(θ, x(μ))

μ = 1,2,…, Nsupervised learning

: the set of network parametersθ
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Summary of the result
• For the mean-squared error, the SGD noise is 

proportional to the Hessian and the loss value 
near a (local or global) minimum at θ*

Σ(θ) ≈
2ηL(θ)

B
H(θ*)
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proportional to the Hessian and the loss value 
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• [main result] escape rate from a local minimum
(escape probability per time)
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Method: random time change
Σ(θ) =

2ηL(θ)
B

H(θ*)dθt = − ∇L(θt)dt + Σ(θt) ⋅ dWt

complicated multiplicative noise transform to a simple additive noise→
(hard to dal with)
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barrier height ΔU = U(θs) − U(θ*) = log[L(θs)/L(θ*)]

remark. Dependence on the effective dimension is not explained in this rough argument
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dθ̃τ = − ∇U(θ̃τ)dτ +
2η
B

H(θ*)dW̃τ U(θ) = log L(θ)

SDE with simple additive noise on the logarithmic loss landscape

= [L(θs)/L(θ*)]−1/Tκ ∼ e−ΔU/TArrhenius law
Eyring (1935), Kramers (1940), … “temperature” T = ηh*e /B
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Implications

• SGD prefers flat (i.e. small ) minima with small effective dimension h*e n

κ =
h*e hs

e

2π [ L(θs)
L(θ*) ]

−( B
ηh*e

+ 1 − n
2 )

• stability condition
B

ηh*e
+ 1 −

n
2

> 0 η < ηc :=
2

n − 2
B
h*e

experiment: binary classification of 5,000 samples from MNIST dataset using a FNN with 3 hidden 
layers, each of which has 100 neurons 
(1) a minimum is found by  iterations of SGD update with fixed values of  and  
(2) set  and gradually increase  from a small value 0.001 
(3) measure  at which the loss value will suddenly increase

104 η = ηini B = Bini
B = 8 η

ηc theoretical prediction of ηc

strong SGD noise
ηini = 0.1, Bini = 50

h*e = 8.54, n = 20.1

weak SGD noise
ηini = 0.05, Bini = 100

h*e = 18.4, n = 28.1



Conclusion

• SGD noise covariance is proportional to the Hessian and the 
loss value


• SGD is described by a SDE with additive noise on the 
logarithmic loss landscape


• Power-law escape rate from minima crucially depends on the 
effective dimension


• SGD prefers minima that are flat and have a small effective 
dimension


