Adversarial Vulnerability of Randomized Ensembles

Hassan Dbouk & Naresh Shanbhag

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Robust and Efficient Inference

deep nets are vulnerable

original sample

 $+.007 \times$

decision: 'panda'

adversarial sample

decision: 'gibbon'

Robust and Efficient Inference

deep nets are vulnerable

original sample

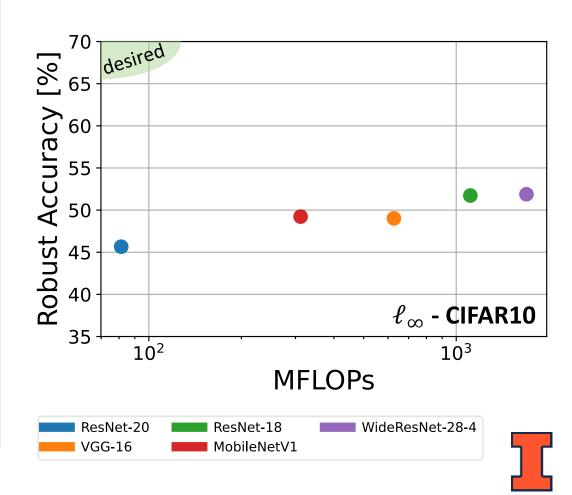
 $+.007 \times$

decision: 'panda'

adversarial sample

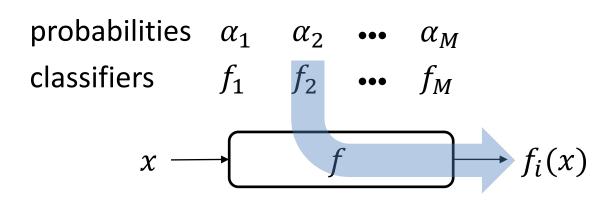
decision: 'gibbon'

robustness is expensive



Robustness via Randomized Ensembles

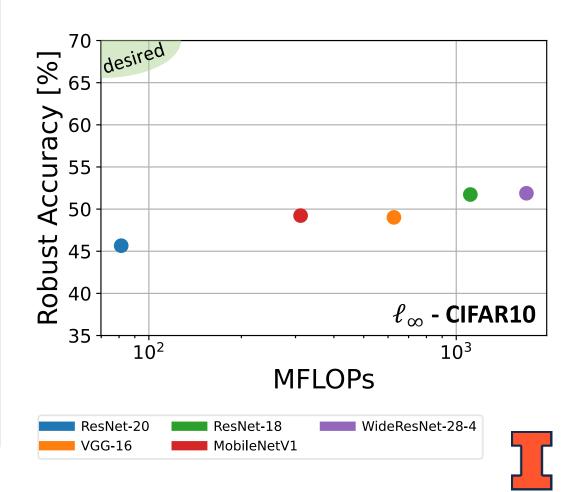
multiple classifiers $f_1, ..., f_M$



inference: pick one at random

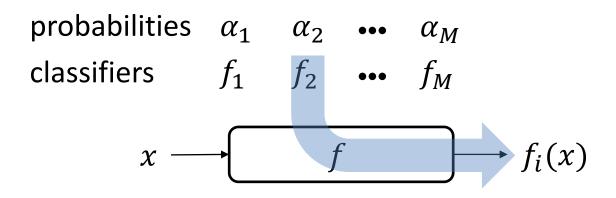
no increase in # of FLOPS

robustness is expensive



Robustness via Randomized Ensembles

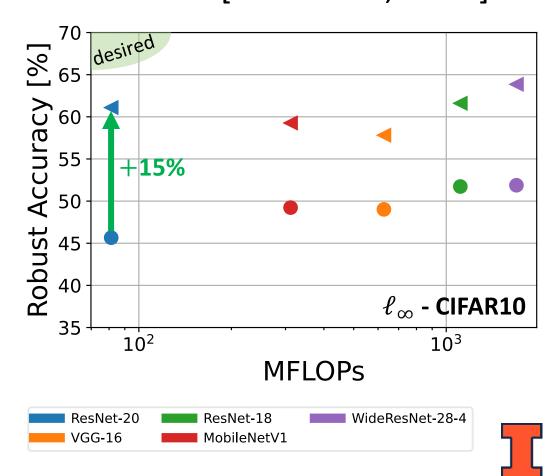
multiple classifiers $f_1, ..., f_M$



inference: pick one at random

no increase in # of FLOPS

using two classifiers trained via BAT [Pinot et al, 2020]



Robustness via Randomized Ensembles

multiple classifiers f_1, \dots, f_M

using two classifiers trained via BAT [Pinot et al, 2020]

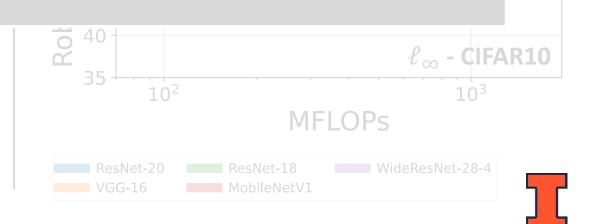
probabilities α_1 α_2 ••• α_M

clas

Are the robustness gains provided by randomized ensembles real?

inference: pick one at random

no increase in # of FLOPS

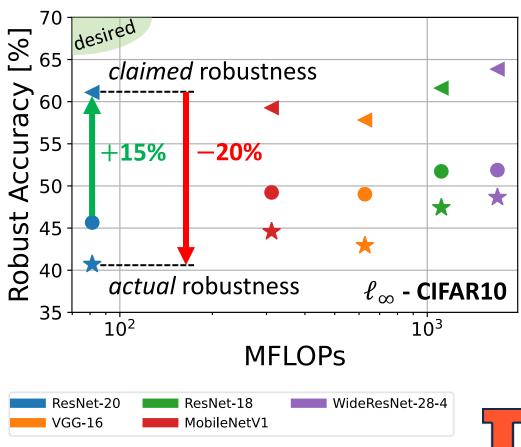


This Work: Revealing the Vulnerability

main contributions

- show that adaptive PGD is ill-suited for evaluating robustness of RECs
 - no guarantees even for linear classifiers
- propose a provably consistent and efficient adversarial <u>attack</u> algorithm – **ARC**: Attacking Randomized ensembles of Classifiers
- demonstrate that existing randomized ensembles defenses are in fact more vulnerable than standard AT

BAT defense compromised



Algorithm 1 The ARC Algorithm for BLCs

```
1: Input: REC (\mathcal{F}, \alpha), labeled data-point (\mathbf{x}, y), norm p,
         and radius \epsilon.
  2: Output: Adversarial perturbation \delta such that \|\delta\|_p \leq
  3: Initialize \delta \leftarrow \mathbf{0}, v \leftarrow L(\mathbf{x}, y, \boldsymbol{\alpha}), q \leftarrow \frac{p}{p-1}
  4: Define \mathcal{I} such that \alpha_i \geq \alpha_j \ \forall i, j \in \mathcal{I} and i \leq j.
  5: for i \in \mathcal{I} do
              /* optimal unit \ell_p norm adversarial direction for f_i
             \mathbf{g} \leftarrow -y \frac{|\mathbf{w}_i|^{q-1} \odot \operatorname{sgn}(\mathbf{w}_i)}{\|\mathbf{w}_i\|_q^{q-1}}
              /* shortest \ell_p distance between x and f_i
            \zeta \leftarrow \frac{|f_i(\mathbf{x})|}{\|\mathbf{w}_i\|_q}
             if \zeta \geq \epsilon \vee i = 1 then
                   \beta \leftarrow \epsilon
11:
12:
                \beta \leftarrow \frac{\epsilon}{\epsilon - \zeta} \left| \frac{y \mathbf{w_i}^\mathsf{T} \boldsymbol{\delta}}{\|\mathbf{w_i}\|_q} + \zeta \right| + \rho
              end if
             \hat{\delta} \leftarrow \epsilon \frac{\delta + \beta \mathbf{g}}{\|\delta + \beta \mathbf{g}\|_p} \quad \triangleright \text{ candidate } \hat{\delta} \text{ such that } \|\hat{\delta}\|_p = \epsilon
              \hat{v} \leftarrow L(\mathbf{x} + \hat{\boldsymbol{\delta}}, y, \boldsymbol{\alpha})
             /* if robustness does not increase, update \delta
18:
             if \hat{v} \leq v then
                   \delta \leftarrow \hat{\delta}, v \leftarrow \hat{v}
19:
              end if
21: end for
```

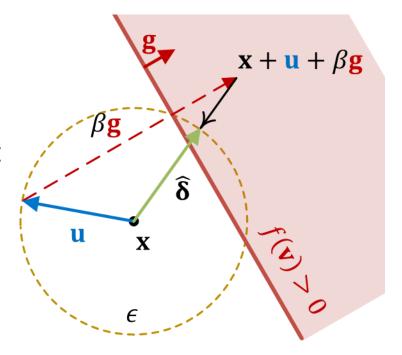
greedily iterate over all classifiers <u>once</u>

Algorithm 1 The ARC Algorithm for BLCs

- 1: **Input:** REC $(\mathcal{F}, \boldsymbol{\alpha})$, labeled data-point (\mathbf{x}, y) , norm p, and radius ϵ .
- 2: **Output:** Adversarial perturbation δ such that $\|\delta\|_p \leq \epsilon$.
- 3: Initialize $\delta \leftarrow \mathbf{0}, v \leftarrow L(\mathbf{x}, y, \boldsymbol{\alpha})$, $q \leftarrow \frac{p}{p-1}$
- 4: Define \mathcal{I} such that $\alpha_i \geq \alpha_j \ \forall i, j \in \mathcal{I}$ and $i \leq j$.
- 5: for $i \in \mathcal{I}$ do
- 6: /* optimal unit ℓ_p norm adversarial direction for f_i
- 7: $\mathbf{g} \leftarrow -y \frac{|\mathbf{w}_i|^{q-1} \odot \operatorname{sgn}(\mathbf{w}_i)}{\|\mathbf{w}_i\|_q^{q-1}}$
- 8: /* shortest ℓ_n distance between x and f_i
- 9: $\zeta \leftarrow \frac{|f_i(\mathbf{x})|}{\|\mathbf{w}_i\|_q}$
- 10: **if** $\zeta > \epsilon \lor i = 1$ **then**
- 11: $\beta \leftarrow \epsilon$
- 12: **else**
- 3: $\beta \leftarrow \frac{\epsilon}{\epsilon \zeta} \left| \frac{y \mathbf{w}_i^{\mathsf{T}} \boldsymbol{\delta}}{\|\mathbf{w}_i\|_q} + \zeta \right| + \rho$
- 14: **end if**
- 15: $\hat{\boldsymbol{\delta}} \leftarrow \epsilon \frac{\boldsymbol{\delta} + \beta \mathbf{g}}{\|\boldsymbol{\delta} + \beta \mathbf{g}\|_p} \quad \triangleright \text{ candidate } \hat{\boldsymbol{\delta}} \text{ such that } \|\hat{\boldsymbol{\delta}}\|_p = \epsilon$
- 16: $\hat{v} \leftarrow L(\mathbf{x} + \hat{\boldsymbol{\delta}}, y, \boldsymbol{\alpha})$
- 17: /* if robustness does not increase, update δ
- 18: if $\hat{v} \leq v$ then
- 19: $\boldsymbol{\delta} \leftarrow \hat{\boldsymbol{\delta}}, v \leftarrow \hat{v}$
- 20: **end if**
- **21: end for**

- greedily iterate over all classifiers once
- novel <u>adaptive step size</u> computation:

smallest $\beta > 0$ such that $\widehat{\boldsymbol{\delta}} = \gamma (\mathbf{u} + \beta \mathbf{g})$ can fool f

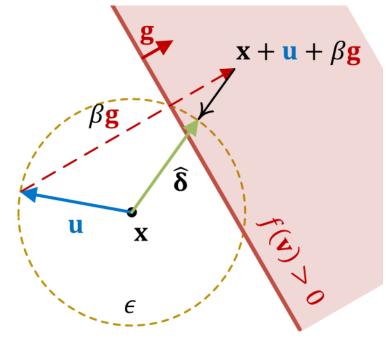


Algorithm 1 The ARC Algorithm for BLCs

- 1: **Input:** REC $(\mathcal{F}, \boldsymbol{\alpha})$, labeled data-point (\mathbf{x}, y) , norm p, and radius ϵ .
- 2: **Output:** Adversarial perturbation δ such that $\|\delta\|_p \leq \epsilon$.
- 3: Initialize $\delta \leftarrow \mathbf{0}, v \leftarrow L(\mathbf{x}, y, \boldsymbol{\alpha})$, $q \leftarrow \frac{p}{p-1}$
- 4: Define \mathcal{I} such that $\alpha_i \geq \alpha_j \ \forall i, j \in \mathcal{I}$ and $i \leq j$.
- 5: for $i \in \mathcal{I}$ do
- 6: /* optimal unit ℓ_p norm adversarial direction for f_i
- 7: $\mathbf{g} \leftarrow -y \frac{|\mathbf{w}_i|^{q-1} \odot \operatorname{sgn}(\mathbf{w}_i)}{\|\mathbf{w}_i\|_q^{q-1}}$
- 8: /* shortest ℓ_p distance between x and f_i
- 9: $\zeta \leftarrow \frac{|f_i(\mathbf{x})|}{\|\mathbf{w}_i\|_q}$
- 10: **if** $\zeta \geq \epsilon \lor i = 1$ **then**
- 11: $\beta \leftarrow \epsilon$
- 12: **else**
- 13: $\beta \leftarrow \frac{\epsilon}{\epsilon \zeta} \left| \frac{y \mathbf{w}_i^{\mathsf{T}} \boldsymbol{\delta}}{\|\mathbf{w}_i\|_q} + \zeta \right| + \rho$
- 14: **end if**
- 15: $\hat{\boldsymbol{\delta}} \leftarrow \epsilon \frac{\boldsymbol{\delta} + \beta \mathbf{g}}{\|\boldsymbol{\delta} + \beta \mathbf{g}\|_p} \quad \triangleright \text{ candidate } \hat{\boldsymbol{\delta}} \text{ such that } \|\hat{\boldsymbol{\delta}}\|_p = \epsilon$
- 16: $\hat{v} \leftarrow L(\mathbf{x} + \hat{\boldsymbol{\delta}}, y, \boldsymbol{\alpha})$
- 17: /* if robustness does not increase, update δ
- 18: **if** $\hat{v} \leq v$ **then**
- 19: $\boldsymbol{\delta} \leftarrow \hat{\boldsymbol{\delta}}, v \leftarrow \hat{v}$
- 20: **end if**
- 21: **end for**

- greedily iterate over all classifiers once
- novel <u>adaptive step size</u> computation:

smallest $\beta > 0$ such that $\widehat{\boldsymbol{\delta}} = \gamma (\mathbf{u} + \beta \mathbf{g})$ can fool f



extend to multiclass differentiable classifiers

Algorithm 1 The ARC Algorithm for BLCs

- 1: **Input:** REC (\mathcal{F}, α) , labeled data-point (\mathbf{x}, y) , norm p, and radius ϵ .
- 2: **Output:** Adversarial perturbation δ such that $\|\delta\|_p \le \epsilon$.
- 3: Initialize $\delta \leftarrow \mathbf{0}, v \leftarrow L(\mathbf{x}, y, \boldsymbol{\alpha}), q \leftarrow \frac{p}{p-1}$
- 4: Define \mathcal{I} such that $\alpha_i \geq \alpha_j \ \forall i, j \in \mathcal{I}$ and $i \leq j$.
- 5: for $i \in \mathcal{I}$ do

end if

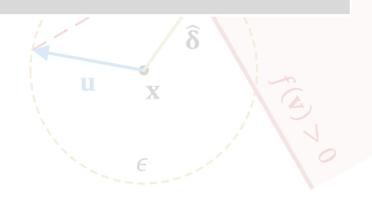
21: end for

- greedily iterate over all classifiers once
- novel <u>adaptive step size</u> computation:

Theorem: the ARC algorithm for binary linear classifiers is consistent

9:
$$\zeta \leftarrow \frac{\|\mathbf{y} \cdot \mathbf{v}_{n}\|_{q}}{\|\mathbf{w}_{i}\|_{q}}$$
10: **if** $\zeta \geq \epsilon \vee i = 1$ **then**
11: $\beta \leftarrow \epsilon$
12: **else**
13: $\beta \leftarrow \frac{\epsilon}{\epsilon - \zeta} \left| \frac{y \mathbf{w}_{i}^{\mathsf{T}} \boldsymbol{\delta}}{\|\mathbf{w}_{i}\|_{q}} + \zeta \right| + \rho$
14: **end if**
15: $\hat{\boldsymbol{\delta}} \leftarrow \epsilon \frac{\boldsymbol{\delta} + \beta \mathbf{g}}{\|\boldsymbol{\delta} + \beta \mathbf{g}\|_{p}} \Rightarrow \text{candidate } \hat{\boldsymbol{\delta}} \text{ such that } \|\hat{\boldsymbol{\delta}}\|_{p} = \epsilon$
16: $\hat{v} \leftarrow L(\mathbf{x} + \hat{\boldsymbol{\delta}}, y, \boldsymbol{\alpha})$
17: /* if robustness does not increase, update $\boldsymbol{\delta}$
18: **if** $\hat{v} \leq v$ **then**
19: $\boldsymbol{\delta} \leftarrow \hat{\boldsymbol{\delta}}, v \leftarrow \hat{v}$

$$\widehat{\boldsymbol{\delta}} = \gamma (\mathbf{u} + \beta \mathbf{g})$$
can fool f



extend to multiclass differentiable classifiers

Results Summary

Table 1. Comparison between ARC and adaptive PGD when attacking randomized ensembles trained via BAT (Pinot et al., 2020) across various network architectures and norms on the CIFAR-10 dataset. We use the standard radii $\epsilon_2 = 128/255$ and $\epsilon_{\infty} = 8/255$ for ℓ_2 and ℓ_{∞} -bounded perturbations, respectively.

	ROBUST ACCURACY [%]						
Network	Norm	AT $(M = 1)$	REC (M=2)				
		PGD	APGD	ARC	DIFF		
RESNET-20	ℓ_2	62.43	69.21	55.44	-13.77		
	ℓ_∞	45.66	61.10	40.71	-20.39		
MOBILENETV1	ℓ_2	66.39	67.92	59.43	-8.49		
	ℓ_∞	49.23	59.27	44.59	-14.68		
VGG-16	ℓ_2	66.08	66.96	59.20	-7.76		
	ℓ_∞	49.02	57.82	42.93	-14.89		
RESNET-18	ℓ_2	69.16	70.16	65.88	-4.28		
	ℓ_∞	51.73	61.61	47.43	-14.18		
WIDERESNET-28-4	ℓ_2	69.91	71.48	62.95	-8.53		
	ℓ_{∞}	51.88	63.86	48.65	-15.21		

Table 2. Comparison between ARC and adaptive PGD when attacking randomized ensembles trained via BAT (Pinot et al., 2020) across various datasets and norms. We use ResNet-18 for ImageNet and ResNet-20 for SVHN, CIFAR-10, and CIFAR-100 datasets.

	Norm		ROBUST ACCURACY [%]			
DATASET		Radius (ϵ)	AT $(M = 1)$	REC (M = 2)		
			PGD	APGD	ARC	DIFF
SVHN	ℓ_2	128/255	68.35	74.66	60.15	-14.51
	ℓ_∞	8/255	53.55	65.99	52.01	-13.98
CIFAR-10	ℓ_2	128/255	62.43	69.21	55.44	-13.77
	ℓ_{∞}	8/255	45.66	61.10	40.71	-20.39
CIFAR-100	ℓ_2	128/255	34.60	41.91	28.92	-12.99
	ℓ_∞	8/255	22.29	33.37	17.45	-15.92
IMAGENET	ℓ_2	128/255	47.61	49.62	42.09	-7.53
	ℓ_{∞}	4/255	24.33	35.92	19.54	-16.38

BAT defense <u>compromised</u>

ARC outperforms APGD across various datasets, norms, and network topologies

Next Steps

 develop a <u>complete</u> theoretical framework for better understanding randomized ensembles of classifiers

how can we design <u>truly</u> robust randomized ensembles in practice?

Thank You!

code available at https://github.com/hsndbk4/ARC

Acknowledgement:

This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and Artificial Intelligence Hardware (AIHW) funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).