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Robust and Efficient Inference

deep nets are vulnerable
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Robust and Efficient Inference

deep nets are vulnerable robustness is expensive
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Robustness via Randomized Ensembles

multiple classifiers f1, ..., fi

probabilities a; @y ee ay

classifiers fi [2 e fuy

X —'[ f ]_’ fi(x)

inference: pick one at random

no increase in # of FLOPS

robustness is expensive
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Robustness via Randomized Ensembles

multiple classifiers f1, ..., fi

probabilities a; @y ee ay

classifiers fi [2 e fuy

X —'[ f ]_’ fi(x)

inference: pick one at random

no increase in # of FLOPS

using two classifiers trained
via BAT [Pinot et al, 2020]
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Are the robustness gains provided by randomized ensembles real?



This Work: Revealing the Vulnerability

main contributions

show that adaptive PGD is ill-suited for
evaluating robustness of RECs

— no guarantees even for linear classifiers

propose a provably consistent and efficient
adversarial attack algorithm — ARC: Attacking
Randomized ensembles of Classifiers

demonstrate that existing randomized
ensembles defenses are in fact more
vulnerable than standard AT
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The ARC Algorithm — Binary Linear Classifiers

Algorithm 1 The ARC Algorithm for BLCs
1: Imput: REC (F, a), labeled data-point (x, y), norm p,
and radius e.
2: Output: Adversarial perturbation § such that |||, <
€.

» greedily iterate over all classifiers once

3: Initialize § < 0, v + L(x,y, ), q < I%
4: Define 7 such that a; > «a; Vi,j € Zand ¢ < j.
5: fori € Zdo
6:  /x optimal unit ¢,, norm adversarial direction for f;
la—1 .
7 g —y|w’|rw_ﬁ§§r§(w”
illg
8:  /x shortest £,, distance between x and f;
: |fi ()]
% G
10: if( > eVi=1then
11: b€
12:  else .
: _€_|ywi 0
B B, +C’ T
14:  endif
. N 0+Bg : S Sl —
15: 6+ €|\5+Bg|1p > candidate & such that ||6||, = €

16: 0+ L(x+9d,y,a)

17:  /« if robustness does not increase, update &
18: if v < v then

19: § 6, v+

20:  endif

21: end for
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The ARC Algorithm — Binary Linear Classifiers

Algorithm 1 The ARC Algorithm for BLCs
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» greedily iterate over all classifiers once

Input: REC (F, ), labeled data-point (x, y), norm p,
and radius e. ° : ; ; 5
Output: Adversarial perturbation § such that ||d||, < novel ada ptive step size com P utation:
€.
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Theorem: the ARC algorithm for binary linear classifiers is consistent



Table 1. Comparison between ARC and adaptive PGD when at-
tacking randomized ensembles trained via BAT (Pinot et al., 2020)
across various network architectures and norms on the CIFAR-10
dataset. We use the standard radii e = 128/255 and €5, = 8/255

Results Summary

for /5 and /. -bounded perturbations, respectively.

ROBUST ACCURACY [%]

NETWORK NOrRM AT (M = 1) REC (M = 2)

PGD APGD ARC DIFF
RESNET-20 ¢ e ol dom 2089
MOBILENETV | ;; 23:32 g;:g? iiég __12:22
VGG-16 . d;  sis 193 —1dso
RESNET-18 s ool ira3 —14is
WIDERESNET-28-4 ;:O g?gé gégg 3;22 __122?

 ARC outperforms APGD across various datasets, norms, and network topologies

Table 2. Comparison between ARC and adaptive PGD when at-
tacking randomized ensembles trained via BAT (Pinot et al., 2020)
across various datasets and norms. We use ResNet-18 for Ima-
geNet and and ResNet-20 for SVHN, CIFAR-10, and CIFAR-100

datasets.
ROBUST ACCURACY [%]

DATASET NORM RADIUS (e) AT (M =1) REC (M =2)
PGD APGD ARC DIFF
SVHN o 128/255 68.35 74.66  60.15 —14.51
lo 8/255 53.55 65.99 52.01 —13.98
I 128/255 62.43 69.21 55.44 —13.77
CIFAR-10 loo 8,/255 45.66 61.10 40.71 —20.39
s 128/255 34.60 41.91  28.92 —12.99
CIFAR-100 O 8/255 22.29 33.37 1745 —15.92
o 128/255 47.61 49.62 42.09 —7.53
IMAGENET lo 4/255 24.33 35.92 1954 —16.38

BAT defense compromised




Next Steps

* develop a complete theoretical framework for better understanding randomized
ensembles of classifiers

* how can we design truly robust randomized ensembles in practice?



Thank You!

code available at https://github.com/hsndbk4/ARC
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