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Are the robustness gains provided by randomized ensembles real?



This Work: Revealing the Vulnerability

main contributions BAT defense compromised

+15%

claimed robustness

−20%

actual robustness ℓ∞ - CIFAR10

• show that adaptive PGD is ill-suited for 
evaluating robustness of RECs

– no guarantees even for linear classifiers

• propose a provably consistent and efficient 
adversarial attack algorithm – ARC: Attacking
Randomized ensembles of Classifiers

• demonstrate that existing randomized 
ensembles defenses are in fact more 
vulnerable than standard AT
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The ARC Algorithm – Binary Linear Classifiers

• greedily iterate over all classifiers once

• novel adaptive step size computation:

• extend to multiclass differentiable classifiers

smallest 𝛽 > 0 such that
෡𝛅 = 𝛾 𝐮 + 𝛽𝐠

can fool 𝑓

Theorem: the ARC algorithm for binary linear classifiers is consistent



Results Summary

• ARC outperforms APGD across various datasets, norms, and network topologies

BAT defense compromised



Next Steps

• develop a complete theoretical framework for better understanding randomized 
ensembles of classifiers

• how can we design truly robust randomized ensembles in practice?
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