ROCK: Causal Inference Principles for Reasoning about Commonsense Causality

aWS

Commonsense Causality Reasoning (CCR)

Given two events (described in natural languages), reasoning about their cause-and-effect relationships in a way that corresponds to an average person's judgement.

Concrete Problems

* Estimation/Inference: does E_{1} cause E_{2} ?
* Generation/Explanation: what causes E_{1} ?

Desiderata

* Commonsense: aligns with human's commonsense

* Zero-shot: use only pre-trained language models

Challenges

* How to account for confounders (confounding co-occurrences)?
* How to adopt formal causal inference models?

Example: E_{1} : Alice entered a restaurant. E_{2} : Alice ordered a pizza.
First Goal: Define study units, treatments, potential outcomes, and the estimand.

Unit	Covariates				Treatment T	Observed Outcome Y
	$x_{i, 1}$	$x_{i, 2}$	$x_{i, 3}$	\ldots		1
$\mathbf{1}$	1	0	1	\ldots	1	0
$\mathbf{2}$	0	0	1	\ldots	0	1
$\mathbf{3}$	0	1	0	\ldots	0	

Definitions

Study Unit: Alices (i.e., humans)
Covariates $X_{i, j}$: Occurrence of the j th context to the ith unit
Treatment T_{i} : Occurrence of E_{1} (to the ith unit) Outcome Y_{i} : Occurrence of E_{2} (to the ith unit)

The Causal Estimand (Average Treatment Effect)
$\Delta=\mathbb{E}[Y(1)]-\mathbb{E}[Y(0)]$
$=\mathbb{E}_{X}[\mathbb{E}[Y(1) \mid X, T]-\mathbb{E}[Y(0) \mid X, T]] \quad$ (ignorability)
$=\mathbb{E}\left[1\left\{\mathrm{E}_{1}<\mathrm{E}_{2}\right\}\right]-\mathbb{E}\left[1\left\{-\mathrm{E}_{1}<\mathrm{E}_{2}\right\}\right] \quad$ (notation)
$=P\left(E_{1}<E_{2}\right)-P\left(\neg E_{1}<E_{2}\right)$
$Y_{i}(T)$: the potential outcome of the ith unit
corresponds to the treatment T

The ROCK Framework

1. Sample a set of events X_{i} (contexts) that occur before E_{1}.
2. Generate a set of interventions A based on E_{1}.
3. Select the comparable interventions by matching on temporal propensities.
4. Estimate the causal estimand Δ and report the result.

- Evaluation
- Datasets: Choice of Plausible Alternatives (COPA), and GLUCOSE.
- Method: compute the estimand Δ for two choices, choose the choice with a higher Δ.
- Example:

Example B. 1 (Did E_{1} cause $E_{2}^{(1)}$ or $E_{2}^{(2)}$?).
E_{1} : The teacher assigned homework to the students.
$\mathrm{E}_{2}^{(1)}$: The students passed notes.
$\mathrm{E}_{2}^{(2)}$: The students groaned.

- Ablations
- Pre-trained LM vs. a fine-tuned LM (on NYT) for temporality predictor.
- On covariate set size.
- On various normalization choices (e.g., how to normalize the temporal probabilities).

Performance (accuracy) on COPA and GLUCOSE

	Random Baseline	$\begin{aligned} & \hline \hat{\Delta}_{1} \uparrow \\ & L_{1} \text {-Balanced } \end{aligned}$	$\begin{aligned} & \hat{\Delta}_{2} \uparrow \\ & L_{2} \text {-Balanced } \end{aligned}$	$\hat{\Delta}_{\mathrm{E}_{1} \uparrow}$ Temporal	$\hat{\Delta}_{\mathcal{A}} \uparrow$ Unbalanced	$\begin{aligned} & \hline \hat{\Delta} \mathcal{X} \\ & \text { Misspecified } \end{aligned}$
COPA-DEV	0.5 ± 0.050	0.6900	0.7000	0.5800	0.5600	0.5300
COPA-TEST	0.5 ± 0.022	0.5640	0.5640	0.5200	0.5400	0.5240
GLUCOSE-D1	0.5 ± 0.040	0.6645	0.6968	0.5677	0.5742	0.6581
COPA-DEV (-T)	0.5 ± 0.050	0.6200	0.6300	0.5300	0.4800	0.5300
COPA-TEST (-T)	0.5 ± 0.022	0.5800	0.5740	0.4540	0.4600	0.4860
GLUCOSE-D1 (-T)	0.5 ± 0.040	0.6065	0.6194	0.5548	0.4387	0.3742

proposed
unadjusted baselines
(using ROCK)

- Adjusted scores Δ_{p} are better than unadjusted scores (the last three columns).
- On COPA-Dev, the performance is similar to self-talk while being truly zero-shot.
- When computing temporal propensities (Step 3), a fine-tuned LM (first three rows) outperforms its pre-trained counterpart (last three rows).

Summary

- Adopt the potential-outcomes framework for the CCR task: find comparable interventions.
- Propose a modular framework, ROCK, to estimate the temporality-motivated causal estimand by temporal propensity matching.
- Empirical studies and ablation studies demonstrate ROCK's effectiveness in zero-shot CCR.

Future Work

- Implicit events
- Explanation generation

Model

Code

Paper

ROCK: Causal Inference Principles for CCR

Funding Disclosure

This work is in part supported by Contract FA8750-19-2-1004 with the US Defense Advanced Research Projects Agency (DARPA); the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA Contract No. 2019-19051600006 under the BETTER Program; ONR Contract N00014-19-1-2620; NSF Contract CCF-1934876; Alfred Sloan Research Fellowship; the Wharton Dean's Research Fund. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, the Department of Defense, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

