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Problem setting

I Binary classification: unknown distribution P over
Rd × {−1,+1};
we have i.i.d. samples from P.

I Goal: compete with the optimal linear classifier ū with
zero-one/misclassification risk OPT > 0 over P, i.e.,

R0−1(ū) := Pr(x ,y)∼P
(
sign(〈ū, x〉) 6= y

)
= OPT.
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Logistic regression

A natural heuristic is logistic regression.
Notation: let `log(z) := ln(1 + e−z), and let

Rlog(w) := E(x ,y)∼P
[
`log

(
y〈w , x〉

)]
denote the population logistic risk of w over P.

We can sample a training set and minimize the empirical risk,
or have a sequence of samples and run stochastic optimization.
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Prior lower and upper bounds for logistic regression

Known upper and lower bounds don’t match:

I With no assumption on P, logistic regression may attain
zero-one risk as bad as 1−OPT (Ben-David et al., 2012).

I With isotropic log-concave distributions, Ω̃(OPT) lower bound
can be shown (Diakonikolas et al., 2020).

I For “well-behaved” and sub-exponential distributions,
SGD attains zero-one risk Õ

(√
OPT

)
(Frei et al., 2021).

Here “well-behaved” conditions:

I standard concentration and anti-concentration conditions;

I a mixture of log-concave distributions (e.g., a Gaussian mixture)
is a nice example.

Q. Can we close these gaps? → precise scope of this work!
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(√
OPT

)
(Frei et al., 2021).

Here “well-behaved” conditions:

I standard concentration and anti-concentration conditions;

I a mixture of log-concave distributions (e.g., a Gaussian mixture)
is a nice example.

Q. Can we close these gaps? → precise scope of this work!

10 / 35



Prior lower and upper bounds for logistic regression

Known upper and lower bounds don’t match:

I With no assumption on P, logistic regression may attain
zero-one risk as bad as 1−OPT (Ben-David et al., 2012).

I With isotropic log-concave distributions, Ω̃(OPT) lower bound
can be shown (Diakonikolas et al., 2020).

I For “well-behaved” and sub-exponential distributions,
SGD attains zero-one risk Õ
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Our lower and upper bounds for logistic regression

I Ω
(√

OPT
)

lower bound for “well-behaved” sub-exponential
distributions;
matching Õ

(√
OPT

)
upper bound from (Frei et al., 2021).

I Õ(OPT) upper bound with additional “radial Lipschitzness.”
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Upper bounds beyond logistic regression

I Diakonikolas et al. (2020) designed a nonconvex SGD method
that achieves O(OPT) + ε risk using Õ(d/ε4) samples.
They can also handle heavy-tailed distributions.

I Other prior algorithms achieving O(OPT) + ε risk involve
solving multiple rounds of convex program
(Awasthi et al., 2014; Daniely, 2015).

I We design a simple two-phase convex program
(logistic regression followed by Perceptron) that
achieves O(OPT ln(1/OPT)) + ε risk using Õ(d/ε2) samples.
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Our Ω
(√

OPT
)

lower bound

Theorem
There exists a distribution on R2 × {−1,+1}, such that:

I the feature distribution is isotropic and a mixture of log-concave
distributions;

I the population logistic risk Rlog has a global minimizer w∗ with

R0−1(w∗) = Ω
(√

OPT
)
.

I Matches Õ
(√

OPT
)

upper bound from (Frei et al., 2021).
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Our Õ(OPT) upper bound under radial Lipschitzness

Assumption

There exists a measurable function κ : R+ → R+ such that for any
two-dimensional subspace V , letting pV denote the density of the
projection of feature distribution onto V , then∣∣pV (r , θ)− pV (r , θ′)

∣∣ ≤ κ(r)|θ − θ′|.

I Holds if pV is Lipschitz continuous (e.g., Gaussian mixtures).

I Does not hold for general log-concave distributions.
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Our Õ(OPT) upper bound under radial Lipschitzness

Theorem
If the distribution is well-behaved, sub-exponential and
radially-Lipschitz, then with learning rate Θ̃(1/d), using
poly(d , 1/ε, ln(1/δ)) samples and iterations, with probability 1− δ,
projected gradient descent outputs wt with

R0−1(wt) = Õ(OPT) + ε.
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Why radial Lipschitzness?

Lemma
If the distribution is well-behaved, sub-exponential and
radially-Lipschitz, and suppose ŵ satisfies
Rlog(ŵ) ≤ Rlog(‖ŵ‖ū) + ε′, then

R0−1(ŵ) = Õ

(
max

{
OPT,

√
ε′

‖ŵ‖ ,
Cκ

‖ŵ‖2

})
.

I Cκ = O(ln(1/OPT)2) for Lipschitz continuous density.

I We can find ŵ with small ε′ with PGD; ‖ŵ‖ = Ω̃
(

1/
√
OPT

)
.
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‖ŵ‖ ,
Cκ

‖ŵ‖2
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Our Õ(OPT) upper bound: two-phase algorithm

Key observation: the lemma holds for the hinge loss
`h(z) := max{−z , 0} without radial Lipschitzness!

Lemma
For hinge loss, if the distribution is well-behaved and
sub-exponential, and suppose ŵ satisfies Rh(ŵ) ≤ Rh(‖ŵ‖ū) + ε′,
then

R0−1(ŵ) = Õ

(
max

{
OPT,

√
ε′

‖ŵ‖

})
.

But, we are not quite done since the global minimizer of Rh is 0...
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Our Õ(OPT) upper bound: two-phase algorithm

Lemma
If the distribution is well-behaved and sub-exponential, and
suppose ŵ satisfies Rh(ŵ) ≤ Rh(‖ŵ‖ū) + ε′, then

R0−1(ŵ) = Õ

(
max

{
OPT,

√
ε′

‖ŵ‖

})
.

Ideas:

I first find a unit v that is Õ
(√

OPT
)

away from ū;

I then minimize Rh over D :=
{
w
∣∣〈w , v〉 ≥ 1

}
.

I ∀w ∈ D, ‖w‖ ≥ 1.

I ‖ŵ‖ū may not in D, but
(

1 + Õ(OPT)
)
‖ŵ‖ū ∈ D!

Since we choose v close to ū.
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(√

OPT
)

away from ū;
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1 + Õ(OPT)
)
‖ŵ‖ū ∈ D!
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R0−1(ŵ) = Õ
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Our Õ(OPT) upper bound: two-phase algorithm

Another ingredient: when minimizing hinge loss, we use SGD
(instead of GD) for sample efficiency;

basically it’s Perceptron with a restricted domain and warm start
given by v .

Theorem
If the distribution is well-behaved and sub-exponential, using
Õ(d/ε2) samples, SGD can achieve zero-one risk
O(OPT ln(1/OPT)) + ε.
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Õ(d/ε2) samples, SGD can achieve zero-one risk
O(OPT ln(1/OPT)) + ε.

34 / 35



Thanks, please come to our poster!
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