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Problem setting

» Binary classification: unknown distribution P over
RY x {~1,+1};
we have i.i.d. samples from P.

» Goal: compete with the optimal linear classifier o with
zero-one/misclassification risk OPT > 0 over P, i.e.,

ROfl(E) = Pr(x,y)NP (sign((ﬁ,x}) # )/) = OPT.
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Comparison of prior results and our results
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Logistic regression

A natural heuristic is logistic regression.
Notation: let {jog(z) := In(1 + e7%), and let

Riog(W) = Ex y)op [liog (y{w,x))]

denote the population logistic risk of w over P.

We can sample a training set and minimize the empirical risk,
or have a sequence of samples and run stochastic optimization.
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Prior lower and upper bounds for logistic regression

Known upper and lower bounds don’t match:

> With no assumption on P, logistic regression may attain
zero-one risk as bad as 1 — OPT (Ben-David et al., 2012).
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Prior lower and upper bounds for logistic regression

Known upper and lower bounds don’t match:

> With no assumption on P, logistic regression may attain
zero-one risk as bad as 1 — OPT (Ben-David et al., 2012).

> With isotropic log-concave distributions, Q(OPT) lower bound
can be shown (Diakonikolas et al., 2020).

» For “well-behaved” and sub-exponential distributions,
SGD attains zero-one risk O (vVOPT) (Frei et al., 2021).

Here “well-behaved” conditions:
» standard concentration and anti-concentration conditions;

» a mixture of log-concave distributions (e.g., a Gaussian mixture)
is a nice example.

Q. Can we close these gaps? — precise scope of this work!
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Our lower and upper bounds for logistic regression

> Q (vVOPT) lower bound for “well-behaved” sub-exponential
distributionNS;
matching O (VVOPT) upper bound from (Frei et al., 2021).
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Our lower and upper bounds for logistic regression

> Q (vVOPT) lower bound for “well-behaved” sub-exponential
distributions;

matching O (vOPT) upper bound from (Frei et al., 2021).
> 5(OPT) upper bound with additional “radial Lipschitzness.”
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Upper bounds beyond logistic regression

» Diakonikolas et al. (2020) designed a nonconvex SGD method
that achieves O(OPT) + ¢ risk using O(d/e*) samples.
They can also handle heavy-tailed distributions.
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Upper bounds beyond logistic regression

» Diakonikolas et al. (2020) designed a nonconvex SGD method
that achieves O(OPT) + ¢ risk using O(d/e*) samples.
They can also handle heavy-tailed distributions.

» Other prior algorithms achieving O(OPT) + e risk involve
solving multiple rounds of convex program
(Awasthi et al., 2014; Daniely, 2015).

> We design a simple two-phase convex program
(logistic regression followed by Perceptron) that
achieves O(OPT In(1/OPT)) + ¢ risk using O(d/e?) samples.
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Details
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Our Q (\/ OPT) lower bound

Theorem
There exists a distribution on R? x {—1,+1}, such that:

» the feature distribution is isotropic and a mixture of log-concave
distributions;

» the population logistic risk Riog has a global minimizer w* with

Ro-1(w*) = Q (VOPT).
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Our Q (\/ OPT) lower bound

Theorem
There exists a distribution on R? x {—1,+1}, such that:

» the feature distribution is isotropic and a mixture of log-concave
distributions;

» the population logistic risk Riog has a global minimizer w* with

Ro-1(w*) = Q (VOPT).

> Matches O (VOPT) upper bound from (Frei et al., 2021).
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Our 5(OPT) upper bound under radial Lipschitzness

Assumption

There exists a measurable function x : Ry — R such that for any
two-dimensional subspace V/, letting py denote the density of the
projection of feature distribution onto V/, then

|pv(r,0) = py(r,0")] < (r)l6 - ¢'].
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Our 5(OPT) upper bound under radial Lipschitzness

Assumption

There exists a measurable function x : Ry — R such that for any
two-dimensional subspace V/, letting py denote the density of the
projection of feature distribution onto V/, then

|pv(r,0) = py(r,0")] < (r)l6 - ¢'].

» Holds if py is Lipschitz continuous (e.g., Gaussian mixtures).

» Does not hold for general log-concave distributions.
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Our 5(OPT) upper bound under radial Lipschitzness

Theorem

If the distribution is well-behaved, sub-exponential and
radially-Lipschitz, then with learning rate ©(1/d), using
poly(d,1/e,In(1/8)) samples and iterations, with probability 1 — §,
projected gradient descent outputs w; with

Ro_l(Wt) = O(OPT) + €.
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Why radial Lipschitzness?

Lemma

If the distribution is well-behaved, sub-exponential and
radially-Lipschitz, and suppose W satisfies

Riog(W) < Riog(/|W[|@) + €', then

Ro-1(#) = O (max {OPT TaT ||va”2}) :
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Why radial Lipschitzness?

Lemma

If the distribution is well-behaved, sub-exponential and
radially-Lipschitz, and suppose W satistfies

Riog(#) < Riog(|#]|8) + ¢, then

>

Ro_l(W) = 5 (max {OPT, ”6/”, ||V(A‘T/AH2 }) .

» C. = O(In(1/OPT)?) for Lipschitz continuous density.
> We can find @ with small ¢ with PGD; ||w] = Q (1/\/OPT>.
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Our 5(OPT) upper bound: two-phase algorithm

Key observation: the lemma holds for the hinge loss
lp(z) := max{—z,0} without radial Lipschitzness!

Lemma
For hinge loss, if the distribution is well-behaved and

sub-exponential, and suppose w satisfies Rp(W) < Rp(||w| ) + €,
then

Ro_1(w) = O (max{OPT, ”W}> .
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Our 5(OPT) upper bound: two-phase algorithm

Key observation: the lemma holds for the hinge loss
lp(z) := max{—z,0} without radial Lipschitzness!

Lemma

For hinge loss, if the distribution is well-behaved and
sub-exponential, and suppose W satisfies Ry(W) < Rp(||w||@) + €,
then

Ro_1(w) = O (max{OPT, ”W}> .

But, we are not quite done since the global minimizer of R, is O...
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Our 5(OPT) upper bound: two-phase algorithm

Lemma
If the distribution is well-behaved and sub-exponential, and
suppose W satisfies Rp(W) < Rp(||W]|@) + €, then

Ro_1(W) = O (max{OPT, wj’/}) )

Ideas:
> first find a unit v that is O (\/OPT) away from @,
> then minimize Ry, over D := {w|(w,v) > 1}.
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Our 5(OPT) upper bound: two-phase algorithm

Lemma
If the distribution is well-behaved and sub-exponential, and
suppose W satisfies Rp(W) < Rp(||W]|@) + €, then

Ro_1(W) = O (max{OPT, wj’/}) )

Ideas:
> first find a unit v that is O (\/Oﬁ) away from @,
> then minimize Ry, over D := {w|(w,v) > 1}.
> Vw e D, |w|>1.
> ||W||@ may not in D, but (1 + 5(0PT)) lw]a e D!
Since we choose v close to .
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Our 5(OPT) upper bound: two-phase algorithm

Another ingredient: when minimizing hinge loss, we use SGD
(instead of GD) for sample efficiency;
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Our 5(OPT) upper bound: two-phase algorithm

Another ingredient: when minimizing hinge loss, we use SGD
(instead of GD) for sample efficiency;

basically it's Perceptron with a restricted domain and warm start
given by v.

Theorem

If the distribution is well-behaved and sub-exponential, using

O(d/e?) samples, SGD can achieve zero-one risk
O(OPTIn(1/OPT)) + .
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Thanks, please come to our poster!
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