First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach

Andrew Wagenmaker¹, Yifang Chen¹, Max Simchowitz², Simon S. Du¹, Kevin Jamieson¹

1. University of Washington, 2. MIT

In practical RL settings, rewards may be sparse and hard-to-reach

In practical RL settings, rewards may be sparse and hard-to-reach

Atari's Montezuma's Revenge & Pitfall

In practical RL settings, rewards may be sparse and hard-to-reach

Atari's Montezuma's Revenge & Pitfall

In such settings, could have $V_1^{\star} \ll 1$, for V_1^{\star} the maximum expected reward

The maximum attainable reward gives a scale to the problem

The maximum attainable reward gives a scale to the problem

In general in RL, we are interested in finding some policy $\hat{\pi}$ with performance close to that of the optimal policy:

$$V_1^{\star} - V_1^{\hat{\pi}} \le \epsilon$$

The maximum attainable reward gives a scale to the problem

In general in RL, we are interested in finding some policy $\hat{\pi}$ with performance close to that of the optimal policy:

$$V_1^{\star} - V_1^{\hat{\pi}} \le \epsilon$$

Say we want $V_1^{\hat{\pi}} \ge 0.9 \cdot V_1^{\star}$, then need $\epsilon \sim 0.1 \cdot V_1^{\star}$

The maximum attainable reward gives a scale to the problem

In general in RL, we are interested in finding some policy $\hat{\pi}$ with performance close to that of the optimal policy:

$$V_1^{\star} - V_1^{\hat{\pi}} \le \epsilon$$

Say we want $V_1^{\hat{\pi}} \ge 0.9 \cdot V_1^{\star}$, then need $\epsilon \sim 0.1 \cdot V_1^{\star}$

Standard guarantees scale as $O(1/\epsilon^2) = O(1/(V_1^*)^2)$

It is known that in online and statistical learning, first-order guarantees are possible -guarantees that scale with the value of the optimal policy

It is known that in online and statistical learning, first-order guarantees are possible -guarantees that scale with the value of the optimal policy

Taking inspiration from this literature, we might hope that we can obtain a scaling of:

It is known that in online and statistical learning, first-order guarantees are possible -guarantees that scale with the value of the optimal policy

Taking inspiration from this literature, we might hope that we can obtain a scaling of: $O(V_1^{\star}/\epsilon^2)$

It is known that in online and statistical learning, first-order guarantees are possible -guarantees that scale with the value of the optimal policy

Taking inspiration from this literature, we might hope that we can obtain a scaling of: $O(V_1^{\star}/\epsilon^2)$ \rightarrow Improves $O(1/(V_1^{\star})^2)$ scaling to $O(1/V_1^{\star})$

It is known that in online and statistical learning, first-order guarantees are possible -guarantees that scale with the value of the optimal policy

Taking inspiration from this literature, we might hope that we can obtain a scaling of: $O(V_1^{\star}/\epsilon^2)$

 \rightarrow Improves $O(1/(V_1^{\star})^2)$ scaling to $O(1/V_1^{\star})$

More importantly, to obtain such guarantees, algorithms must explore more efficiently, yielding better practical performance

with large state spaces using function approximation

We are particularly interested in studying this problem in the setting of MDPs

with large state spaces using function approximation

We are particularly interested in studying this problem in the setting of MDPs

We obtain a *first-order-style* regret bound in linear MDPs of $O(\sqrt{V_1^{\star}K})$, which translates to a PAC guarantee of $O(V_1^{\star}/\epsilon^2)$

with large state spaces using function approximation

- We obtain a *first-order-style* regret bound in linear MDPs of $O(\sqrt{})$ $V_1^{\star}K),$ which translates to a PAC guarantee of $O(V_1^{\star}/\epsilon^2)$
- Our algorithm critically relies on a novel extension of the robust Catoni estimator to correlated, heteroscedastic data

We are particularly interested in studying this problem in the setting of MDPs

with large state spaces using function approximation

- We obtain a *first-order-style* regret bound in linear MDPs of $O(\sqrt{V_1^*K})$, which translates to a PAC guarantee of $O(V_1^{\star}/\epsilon^2)$
- Our algorithm critically relies on a novel extension of the robust Catoni estimator to correlated, heteroscedastic data

To our knowledge, ours is the first result to show first-order regret in RL with large state spaces

We are particularly interested in studying this problem in the setting of MDPs

Preliminaries

Episodic RL:

Agent

Episodic RL:

Agent

Episodic RL:

We assume $\{P_h\}_{h=1}^H$ is **unknown**, and $\{R_h\}_{h=1}^H$ **known**

Episodic RL:

We assume $\{P_h\}_{h=1}^H$ is **unknown**, and $\{R_h\}_{h=1}^H$ **known**

We consider Linear MDPs:

Episodic RL:

We assume $\{P_h\}_{h=1}^H$ is **unknown**, and

We consider **Linear MDPs**: Known feature vectors

$$\phi(s,a): \mathcal{S} \times \mathcal{A} \to \mathbb{R}^{d}$$

d
$$\{R_h\}_{h=1}^H$$
 known

Episodic RL:

We assume $\{P_h\}_{h=1}^H$ is **unknown**, and $\{R_h\}_{h=1}^H$ **known**

We consider Linear MDPs:

- Known feature vectors $\phi(s,a): \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$
- H unknown signed measures $\mu_h \in \mathbb{R}^d$ over \mathcal{S} such that: $P_h(\cdot | s, a) = \langle \phi(s, a), \mu_h(\cdot) \rangle$

Let:

Let: • $V_1^{\pi} := \mathbb{E}_{\pi} [\sum_{h=1}^{H} R_h(s_h, a_h)]$, the expected reward of policy π

Let:

- $V_1^{\pi} := \mathbb{E}_{\pi} [\sum_{h=1}^{H} R_h(s_h, a_h)]$, the expected reward of policy π
- $V_1^{\star} := \sup_{\pi} V_1^{\pi}$

Let:

- $V_1^{\pi} := \mathbb{E}_{\pi} \left[\sum_{h=1}^{H} R_h(s_h, a_h) \right]$, the expected reward of policy π
- $V_1^{\star} := \sup_{\pi} V_1^{\pi}$

Consider playing some algorithm for K episodes where at episode k we play policy π_k . Then the **regret** is defined as: $\mathscr{R}_{K} := \sum_{k=1}^{K} (V_{1}^{\star} - V_{1}^{\pi_{k}})$
Preliminaries: Regret

sode k we play $\mathscr{R}_{K} := \sum_{k=1}^{K} (V_{1}^{\star} - V_{1}^{\pi_{k}})$

 $1 - \delta$, has regret bounded as

Theorem. There exists an algorithm, FORCE, which, with probability at least

$\mathscr{R}_K \lesssim \sqrt{d^3 H^3 V_1^{\star} K} \cdot \log^3(HK/\delta) + d^{7/2} H^3 \log^{7/2}(HK/\delta)$

 $1 - \delta$, has regret bounded as $\mathcal{R}_{K} \lesssim \sqrt{d^{3} H^{3} V_{1}^{\star} K} \cdot \log^{3}(HK/\delta) + d^{7/2} H^{3} \log^{7/2}(HK/\delta)$

Theorem. There exists an algorithm, FORCE, which, with probability at least

This corresponds to a PAC guarantee of: $O\left(\frac{d^3H^3 \cdot V_1^{\star}}{\epsilon^2}\right)$

Theorem. There exists an algorithm $1 - \delta$, has regret bounded as $\Re_K \lesssim \sqrt{d^3 H^3 V_1^{\star} K \cdot \log^3(A_1)^2}$

This corresponds to a PAC guarante

Existing Work: $O(\sqrt{d^3H^4K})$ computationally efficient (Jin et al., 2020), $O(\sqrt{d^2H^4K})$ computationally inefficient (Zanette et al., 2020)

Theorem. There exists an algorithm, FORCE, which, with probability at least

$$(HK/\delta) + d^{7/2}H^3 \log^{7/2}(HK/\delta)$$

ee of:
$$O\left(\frac{d^3H^3 \cdot V_1^{\star}}{\epsilon^2}\right)$$

Computationally Efficient Force

FORCE is computationally inefficient, but we obtain a computationally efficient version with the following guarantee

Computationally Efficient Force

FORCE is computationally inefficient, but we obtain a computationally efficient version with the following guarantee

Corollary. There exists a computationally efficient version of FORCE, which, with probability at least $1 - \delta$, has regret bounded as $\mathcal{R}_K \lesssim \sqrt{d^4 H^3 V_1^{\star} K \cdot \log^3(HK/\delta)} + d^4 H^3 \log^{7/2}(HK/\delta)$

Can Existing Approaches Achieve First-Order Regret?

Optimistic LSVI (Jin et al., 2020)

In linear MDPs, for any π , there exists w_h^{π} such that

 $Q_h^{\pi}(s,a) = \langle \phi(s,a), w_h^{\pi} \rangle$

Optimistic LSVI (Jin et al., 2020)

In linear MDPs, for any π , there exists w_h^{π} such that $Q_h^{\pi}(s,a) = \langle \phi(s,a), w_h^{\pi} \rangle$ Existing approaches have used this fact to fit a w_h^k using least-squares

regression:

$$w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h+1}^k (s_{h+1,\tau}) - w^{\mathsf{T}} \phi_{h,\tau})^2 + \|w\|_2^2$$

Optimistic LSVI (Jin et al., 2020)

- In linear MDPs, for any π , there exists w_h^{π} such that
- regression:

$$w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h+1}^k (s_{h+1,\tau}) - w^{\mathsf{T}} \phi_{h,\tau})^2 + \|w\|_2^2$$

then form an optimistic estimate of the *Q*-value function:
$$Q_h^k(s, a) = \langle \phi(s, a), w_h^k \rangle + \beta \|\phi(s, a)\|_{\Lambda_{h,k-1}^{-1}}$$

$$\Lambda_{h,k-1}$$
 the covariance up to episode $k - 1$

and

for Λ

 $Q_h^{\pi}(s,a) = \langle \phi(s,a), w_h^{\pi} \rangle$ Existing approaches have used this fact to fit a w_h^k using least-squares

Apply the inequality:

Apply the inequality:

Assume
$$\mathbb{E}[\eta_{\tau} | \mathscr{F}_{\tau-1}] = 0$$
, $|\eta_{\tau}| \leq \gamma$, and $\phi_{\tau} \in \mathbb{R}^{d}$ is $\mathscr{F}_{\tau-1}$ -measurable.
Then with high probability:
 $\|\sum_{\tau=1}^{k} \phi_{\tau} \eta_{\tau}\|_{\Lambda_{k}^{-1}} \leq \gamma \sqrt{d + \log 1/\delta}$
where $\Lambda_{k} = \sum_{\tau=1}^{k} \phi_{\tau} \phi_{\tau}^{T} + \lambda I$ are the covariates

Apply the inequality:

Statistical Deviation $\leq O($ Absolute Magnitude of Noise)

Apply the inequality:

of the noise

Statistical Deviation $\leq O($ **Absolute Magnitude of Noise**)

This is fundamentally a *Hoeffding-style* bound—it scales with the magnitude

Let $\sigma_{h,\tau}^2$ be an upper bound on the next-state variance, and now let: $w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h+1}^k (s_{h+1,\tau}) - w^{\mathsf{T}} \phi_{h,\tau})^2 / \sigma_{h,\tau}^2 + ||w||_2^2$

Let $\sigma_{h,\tau}^2$ be an upper bound on the next-state variance, and now let: $w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h-\tau}^k)$

Assume $\mathbb{E}[\eta_{\tau} | \mathscr{F}_{\tau-1}] = 0$, $\mathbb{V}[\eta_{\tau} | \mathscr{F}_{\tau-1}] \leq \sigma^2$, $| \eta \in \mathscr{F}_{\tau-1}$ -measurable. Then with high probability: $\| \sum_{\tau=1}^k \phi_{\tau} \eta_{\tau} \|_{\Lambda_k^{-1}} \lesssim \sigma \sqrt{d + \log 1/\tau}$ where $\Lambda_k = \sum_{\tau=1}^k \phi_{\tau} \phi_{\tau}^{\top} + \lambda I$ are the covariates

$$\sum_{k=1}^{\infty} (s_{h+1,\tau}) - w^{\mathsf{T}} \phi_{h,\tau})^2 / \sigma_{h,\tau}^2 + \|w\|_2^2$$

$$[\tau_{-1}] \leq \sigma^2$$
, $|\eta_{\tau}| \leq \gamma$ and $\phi_{\tau} \in \mathbb{R}^d$ is probability:

$$\sqrt{d + \log 1/\delta} + \gamma \log 1/\delta$$

Let $\sigma_{h,\tau}^2$ be an upper bound on the next-state variance, and now let: $w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h+1}^k(s_{h+1,\tau}) - w^{\mathsf{T}}\phi_{h,\tau})^2 / \sigma_{h,\tau}^2 + ||w||_2^2$

Statistical Deviation $\leq O($ **Standard Deviation of Noise** + Absolute Magnitude of Noise)

Let $\sigma_{h,\tau}^2$ be an upper bound on the next-state variance, and now let: $w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h+1}^k (s_{h+1,\tau}) - w^{\mathsf{T}} \phi_{h,\tau})^2 / \sigma_{h,\tau}^2 + ||w||_2^2$

Statistical Deviation $\leq O($ Standard Deviation of Noise + Absolute Magnitude of Noise)

In RL, magnitude of "noise" could be large, and regret always $\Omega(\sqrt{K})$

Improving on Existing Approaches

Takeaway: Existing bounds scale in with the *magnitude* of the noise, which is prohibitively large

Improving on Existing Approaches

Takeaway: Existing bounds scale in with the *magnitude* of the noise, which is prohibitively large

Can we do something better?

Improving on Existing Approaches

Takeaway: Existing bounds scale in with the *magnitude* of the noise, which is prohibitively large

Can we do something better?

Catoni Estimation

Catoni Mean Estimation

$$|\hat{\mu}_{\text{cat}} - \mu|$$

Proposition (Catoni, 2012). Let X_1, \ldots, X_T be mean μ iid random variables with variance σ^2 . Then the Catoni estimator will produce an estimate $\hat{\mu}_{cat}$ such that $\lesssim \sqrt{\frac{\sigma^2 \log 1/\delta}{T}}$

Catoni Mean Estimation

Proposition (Catoni, 2012). Let X_1, \ldots, X_T be mean μ iid random variables with variance σ^2 . Then the Catoni estimator will produce an estimate $\hat{\mu}_{cat}$ such that $|\hat{\mu}_{cat} - \mu| \lesssim \sqrt{\frac{\sigma^2 \log 1/\delta}{T}}$

In contrast, Bernstein assumes $|X_i| \leq \gamma$ and has guarantee

 $|\hat{\mu} - \mu| \lesssim \sqrt{\frac{\sigma^2 \log 1/\delta}{T} + \frac{\gamma \cdot \log 1/\delta}{T}}$

Note that

$$w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_h^k)$$

simply equals
 $w_h^k = \sum_{\tau=1}^{k-1} \Lambda_{h,k-1}^{-1} \phi_h$

$v_{h+1}^{k}(s_{h+1,\tau}) - w^{\mathsf{T}}\phi_{h,\tau})^{2}/\sigma_{h,\tau}^{2} + \lambda \|w\|_{2}^{2}$

 $V_{h,\tau}(r_{h,\tau} + V_{h+1}^k(s_{h+1,\tau}))/\sigma_{h,\tau}^2$

Note that

$$w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_h^k)$$

simply equals
 $w_h^k = \sum_{\tau=1}^{k-1} \Lambda_{h,k-1}^{-1} \phi_h$

So we could replace the least-squares estimate with a Catoni estimate. Several issues:

$w_{h+1}^{k}(s_{h+1,\tau}) - w^{\mathsf{T}}\phi_{h,\tau})^{2}/\sigma_{h,\tau}^{2} + \lambda \|w\|_{2}^{2}$ $V_{h,\tau}(r_{h,\tau} + V_{h+1}^k(s_{h+1,\tau}))/\sigma_{h,\tau}^2$

Note that

$$w_h^k \leftarrow \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_h^k)$$

simply equals
 $w_h^k = \sum_{\tau=1}^{k-1} \Lambda_{h,k-1}^{-1} \phi_h$

So we could replace the least-squares estimate with a Catoni estimate. Several issues:

Our data is vector-valued not scalar-valued

$y_{h+1}^{k}(s_{h+1,\tau}) - w^{\top}\phi_{h,\tau})^{2}/\sigma_{h,\tau}^{2} + \lambda \|w\|_{2}^{2}$ $V_{h,\tau}(r_{h,\tau} + V_{h+1}^k(s_{h+1,\tau}))/\sigma_{h,\tau}^2$

Note that

$$w_{h}^{k} \leftarrow \operatorname{argmin}_{w} \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h+1}^{k}(s_{h+1,\tau}) - w^{\top}\phi_{h,\tau})^{2}/\sigma_{h,\tau}^{2} + \lambda ||w||_{2}^{2}$$

simply equals
 $w_{h}^{k} = \sum_{\tau=1}^{k-1} \Lambda_{h,k-1}^{-1} \phi_{h,\tau}(r_{h,\tau} + V_{h+1}^{k}(s_{h+1,\tau}))/\sigma_{h,\tau}^{2}$

So we could replace the least-squares estimate with a Catoni estimate. Several issues:

- Our data is vector-valued not scalar-valued
- Our data is correlated—Catoni assumes independent data

Note that

$$w_{h}^{k} \leftarrow \operatorname{argmin}_{w} \sum_{\tau=1}^{k-1} (r_{h,\tau} + V_{h+1}^{k}(s_{h+1,\tau}) - w^{\top}\phi_{h,\tau})^{2}/\sigma_{h,\tau}^{2} + \lambda \|w\|_{2}^{2}$$

simply equals
 $w_{h}^{k} = \sum_{\tau=1}^{k-1} \Lambda_{h,k-1}^{-1} \phi_{h,\tau}(r_{h,\tau} + V_{h+1}^{k}(s_{h+1,\tau}))/\sigma_{h,\tau}^{2}$

So we could replace the least-squares estimate with a Catoni estimate. Several issues:

- Our data is vector-valued not scalar-valued
- Our data is correlated—Catoni assumes independent data
- In particular, V_{h+1}^k and $\Lambda_{h,k-1}$ are random and correlated with all the data

We prove a novel perturbation bound on the Catoni estimator that allows us to derive a **uniform convergence-style** bound on Catoni estimation

We prove a novel perturbation bound on the Catoni estimator that allows us to derive a **uniform convergence-style** bound on Catoni estimation

Applying this perturbation bound, we:

We prove a novel perturbation bound on the Catoni estimator that allows us to derive a uniform convergence-style bound on Catoni estimation

Applying this perturbation bound, we: • Cover the space of directions in \mathbb{R}^d to handle the vector nature of the data

We prove a novel perturbation bound on the Catoni estimator that allows us to derive a uniform convergence-style bound on Catoni estimation

Applying this perturbation bound, we:

- eliminate correlations

• Cover the space of directions in \mathbb{R}^d to handle the vector nature of the data • Cover the space of functions V_{h+1}^k and covariance matrices $\Lambda_{h,k-1}$ to

We prove a novel perturbation bound on the Catoni estimator that allows us to derive a uniform convergence-style bound on Catoni estimation

Applying this perturbation bound, we: • Cover the space of directions in \mathbb{R}^d to handle the vector nature of the data • Cover the space of functions V_{h+1}^k and covariance matrices $\Lambda_{h,k-1}$ to

- eliminate correlations

Combining these innovations with a martingale version of the Catoni estimator due to Wei et al. (2020) yields the needed result

Uniform Catoni Estimation

Consider setting where ϕ_t are some \mathcal{F}_{t-1} vectors and $y_t = \langle \phi_t, \theta \rangle + \eta_t$ for some θ , $\mathbb{E}[y_t^2 | \mathcal{F}_{t-1}] \leq \sigma_t^2$, and $|\eta_t| \leq \gamma$
Uniform Catoni Estimation

Consider setting where ϕ_t are some \mathcal{F}_{t-1} vectors and $y_t = \langle \phi_t, \theta \rangle + \eta_t$ for some θ , $\mathbb{E}[y_t^2 | \mathcal{F}_{t-1}] \leq \sigma_t^2$, and $|\eta_t| \leq \gamma$

Proposition. Consider running the Catoni estimator on the data at least $1 - \delta$, $\begin{aligned} |\operatorname{cat}[v] - v^{\mathsf{T}}\theta| \lesssim \\ \text{for } \Lambda_T &= \sum_{\tau=1}^T \sigma_{\tau}^{-2} \phi_{\tau} \phi_{\tau}^{\mathsf{T}} + \lambda I. \end{aligned}$

$X_t = Tv^{\mathsf{T}} \Lambda_T^{-1} \phi_t y_t / \sigma_t^2$. Then for all $v \in \mathcal{S}^{d-1}$ simultaneously, with probability

$$\|v\|_{\Lambda_T^{-1}} \cdot \sqrt{d + \log \gamma/\delta}$$

when forming estimate of optimistic Q-value function

Key Idea: replace weighted least-squares estimator with Catoni estimator

when forming estimate of optimistic Q-value function

This removes the dependence on the magnitude term

- Key Idea: replace weighted least-squares estimator with Catoni estimator

when forming estimate of optimistic Q-value function

This removes the dependence on the magnitude term

Some calculation shows that regret then scales as $\operatorname{poly}(d,H) \cdot \sqrt{\sum_{\tau=1}^{K}}$

For $\sigma_{h\tau}^2$ upper bounds on the expected next-state squared value function

- **Key Idea:** replace weighted least-squares estimator with Catoni estimator

$$\sum_{h=1}^{H} \sigma_{h,\tau}^2 + \text{poly}(d,H)$$

when forming estimate of optimistic Q-value function

This removes the dependence on the magnitude term

Some calculation shows that regret then scales as $\operatorname{poly}(d,H) \cdot \sqrt{\sum_{\tau=1}^{K}}$

For $\sigma_{h\tau}^2$ upper bounds on the expected next-state squared value function

This can be bounded as: poly(d, H)

- **Key Idea:** replace weighted least-squares estimator with Catoni estimator

$$\sum_{h=1}^{H} \sigma_{h,\tau}^2 + \text{poly}(d,H)$$

$$) \cdot \sqrt{V_1^{\star} K} + \operatorname{poly}(d, H)$$

Thanks!