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Say we want , then need V ̂π
1 ≥ 0.9 ⋅ V⋆

1 ϵ ∼ 0.1 ⋅ V⋆
1

Standard guarantees scale as O(1/ϵ2) = O(1/(V⋆
1 )2)
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More importantly, to obtain such guarantees, algorithms must explore more 
efficiently, yielding better practical performance
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Our Contributions

We are particularly interested in studying this problem in the setting of MDPs 
with large state spaces using function approximation

• We obtain a first-order-style regret bound in linear MDPs of                   , 
which translates to a PAC guarantee of O(V⋆

1 /ϵ2)
• Our algorithm critically relies on a novel extension of the robust Catoni 

estimator to correlated, heteroscedastic data

To our knowledge, ours is the first result to show first-order regret in RL with 
large state spaces
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sh+1 ∼ Ph( ⋅ |sh, ah)
Agent

Environment

Repeat for h = 1,…, H

ah ∼ πh(sh)

Rh

We consider Linear MDPs:
• Known feature vectors 

ϕ(s, a) : * × , → ℝd

•  unknown signed measures 
 over  such that:                                                        

H
μh ∈ ℝd *
Ph( ⋅ |s, a) = ⟨ϕ(s, a), μh( ⋅ )⟩
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Let: 
• , the expected reward of policy Vπ

1 := 1π[∑H
h=1 Rh(sh, ah)] π

• V⋆
1 := supπ Vπ

1

Consider playing some algorithm for  episodes where at episode  we play 
policy . Then the regret is defined as:

K k
πk

                                        ℛK := ∑K
k=1 (V⋆

1 − Vπk
1 )

Goal: Obtain regret scaling with V⋆
1

Preliminaries: Regret
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, has regret bounded as1 − δ

             ℛK ≲ d3H3V⋆
1 K ⋅ log3(HK/δ) + d7/2H3 log7/2(HK/δ)

This corresponds to a PAC guarantee of:

Existing Work:  computationally efficient (Jin et al., 2020), 
 computationally inefficient (Zanette et al., 2020)

O( d3H4K)
O( d2H4K)
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FORCE is computationally inefficient, but we obtain a computationally 
efficient version with the following guarantee

Corollary. There exists a computationally efficient version of FORCE, which, 
with probability at least , has regret bounded as1 − δ
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Existing approaches have used this fact to fit a  using least-squares 
regression:

wk
h

        wk
h ← argminw ∑k−1

τ=1 (rh,τ + Vk
h+1(sh+1,τ) − w⊤ϕh,τ)2 + ∥w∥2

2
and then form an optimistic estimate of the -value function:Q
                       Qk

h(s, a) = ⟨ϕ(s, a), wk
h⟩ + β∥ϕ(s, a)∥Λ−1

h,k−1

for  the covariance up to episode Λh,k−1 k − 1
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Assume , and  is -measurable. 
Then with high probability:

1[ητ |ℱτ−1] = 0, |ητ | ≤ γ ϕτ ∈ ℝd ℱτ−1

                                   ∥∑k
τ=1 ϕτητ∥Λ−1

k
≲ γ d + log 1/δ

where  are the covariatesΛk = ∑k
τ=1 ϕτϕ⊤

τ + λI

This is fundamentally a Hoeffding-style bound—it scales with the magnitude 
of the noise
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In RL, magnitude of “noise” could be large, and regret always Ω( K)
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Proposition (Catoni, 2012). Let  be mean  iid random variables with 
variance . Then the Catoni estimator will produce an estimate  such that

X1, …, XT μ
σ2 ̂μcat

                                          | ̂μcat − μ | ≲ σ2 log 1/δ
T

In contrast, Bernstein assumes  and has guarantee|Xi | ≤ γ

                                | ̂μ − μ | ≲ σ2 log 1/δ
T

+ γ ⋅ log 1/δ
T
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So we could replace the least-squares estimate with a Catoni estimate. 
Several issues:
• Our data is vector-valued not scalar-valued
• Our data is correlated—Catoni assumes independent data
• In particular,  and  are random and correlated with all the dataVk

h+1 Λh,k−1
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We prove a novel perturbation bound on the Catoni estimator that allows us 
to derive a uniform convergence-style bound on Catoni estimation

Applying this perturbation bound, we:
• Cover the space of directions in  to handle the vector nature of the dataℝd

• Cover the space of functions  and covariance matrices  to 
eliminate correlations

Vk
h+1 Λh,k−1

Combining these innovations with a martingale version of the Catoni 
estimator due to Wei et al. (2020) yields the needed result

Solution: Uniform Catoni Estimation
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                                             yt = ⟨ϕt, θ⟩ + ηt
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Consider setting where  are some  vectors and ϕt ℱt−1
                                             yt = ⟨ϕt, θ⟩ + ηt
for some ,  , and θ 1[y2

t |ℱt−1] ≤ σ2
t |ηt | ≤ γ

Proposition. Consider running the Catoni estimator on the data 
. Then for all  simultaneously, with probability 

at least ,
Xt = Tv⊤Λ−1

T ϕtyt /σ2
t v ∈ *d−1

1 − δ
                          |<=>[v] − v⊤θ | ≲ ∥v∥Λ−1

T
⋅ d + log γ/δ

for .ΛT = ∑T
τ=1 σ−2

τ ϕτϕ⊤
τ + λI
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This removes the dependence on the magnitude term 

Some calculation shows that regret then scales as
                       poly(d, H) ⋅ ∑K

τ=1 ∑H
h=1 σ2

h,τ + poly(d, H)
For  upper bounds on the expected next-state squared value functionσ2

h,τ

This can be bounded as: poly(d, H) ⋅ V⋆
1 K + poly(d, H)
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Thanks!


