
DRIBO: Robust Deep Reinforcement Learning via 
Multi-View Information Bottleneck

Jiameng Fan and Wenchao Li

a robust representation learning approach for DRL to extract only task-relevant 
features from raw pixels based on the multi-view information bottleneck principle.

tl;dr:

Train DRL agents that are robust to 
task-irrelevant visual distractions.

github.com/BU-DEPEND-Lab/DRIBO

https://github.com/BU-DEPEND-Lab/DRIBO
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Task-relevant visual details

Goal: learn latent state representations that maximize task-relevant information
while compressing away task-irrelevant information. 

temporally relevant 
visual details
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Sequential nature of RL
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Learning Objective
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Task-irrelevant Task-relevant

minimizing this term requires 
optimal actions to be known a priori

Challenge:
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Ideally, multi-view observations share the same 
task-relevant information while all the information 

not shared by them is task-irrelevant
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[Tishby et al. arXiv 2000]
[Federici et al. ICLR 2020]
[Fischer. Entropy 2020] 
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Challenge: hard to learn latent state representations 
and optimize the loss for a long horizon T
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DRIBO: robust deep reinforcement learning
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[Hafner et al. ICML 2019]

⋯
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representations  
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DRIBO results: robustness against visual distractions
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Clean setting (no background change)

“Arranging flowers” natural 
video setting (training)

natural video setting (testing)

[Tassa et al. arXiv 2018]
[Kay et al. arXiv 2017]
[Zhang et al. arXiv 2018]

DeepMind Control Suite
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• Averaged 68% improvement 
compared with reconstruction-
based methods (DreamerV2, SLAC)

[Lee et al. NeurIPS 2020][Hafner et al. ICLR 2021]
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• Averaged 68% improvement 
compared with reconstruction-
based methods (DreamerV2, SLAC)

• Averaged 31% improvement 
compared with RAD and CURL

[Laskin et al. ICML 2020][Laskin et al. NeurIPS 2020]
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• Averaged 68% improvement 
compared with reconstruction-
based methods (SLAC, DreamerV2)

• Averaged 31% improvement 
compared with RAD and CURL

• Averaged 41% improvement 
compared with DBC and PI-SAC 
which also explicitly compress 
away task-irrelevant information

[Lee et al. NeurIPS 2020]
[Zhang et al. ICLR 2021]
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t-SNE of DRIBO t-SNE of CURL
Identical foregrounds but 

different backgrounds
Reward 
value

[Van der Maaten
et al. JML 2008]

DRIBO learns latent states that are neighboring in the embedding 
space with similar reward values. 
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t-SNE of DRIBO t-SNE of CURL
Identical foregrounds but 

different backgrounds
Reward 
value

Spatial attention maps
[Zagoruyko et al. ICLR 2017]

[Van der Maaten
et al. JML 2008]

DRIBO learns encoders that focus on the robots’ body and ignore 
irrelevant visual details in the background. 
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DRIBO results: generalization to unseen environments
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Procgen: agents are trained on the 
first 200 levels and evaluated on 

unseen levels during testing. 
[Cobbe et al. ICML 2020]
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DRIBO: Robust Deep Reinforcement Learning via Multi-View Information Bottleneck

Table 1: Procgen returns on test levels after training on 25M environment steps. The mean and standard deviation are
computed over 10 seeds.

Env PPO RAD DrAC UCB-DrAC DAAC IDAAC DRIBO

BigFish 4.0 ± 1.2 9.9 ± 1.7 8.7 ± 1.4 9.7 ± 1.0 17.8 ± 1.4 18.5 ± 1.2 10.9 ± 1.6
StarPilot 24.7 ± 3.4 33.4 ± 5.1 29.5 ± 5.4 30.2 ± 2.8 36.4 ± 2.8 37.0 ± 2.3 36.5 ± 3.0
FruitBot 26.7 ± 0.8 27.3 ± 1.8 28.2 ± 0.8 28.3 ± 0.9 28.6 ± 0.6 27.9 ± 0.5 30.8 ± 0.8

BossFight 7.7 ± 1.0 7.9 ± 0.6 7.5 ± 0.8 8.3 ± 0.8 9.6 ± 0.5 9.8 ± 0.6 12.0 ± 0.5
Ninja 5.9 ± 0.7 6.9 ± 0.8 7.0 ± 0.4 6.9 ± 0.6 6.8 ± 0.4 6.8 ± 0.4 9.7 ± 0.7

Plunder 5.0 ± 0.5 8.5 ± 1.2 9.5 ± 1.0 8.9 ± 1.0 20.7 ± 3.3 23.3 ± 1.4 5.8 ± 1.0
CaveFlyer 5.1 ± 0.9 5.1 ± 0.6 6.3 ± 0.8 5.3 ± 0.9 4.6 ± 0.2 5.0 ± 0.6 7.5 ± 1.0
CoinRun 8.5 ± 0.5 9.0 ± 0.8 8.8 ± 0.2 8.5 ± 0.6 9.2 ± 0.2 9.4 ± 0.1 9.2 ± 0.7
Jumper 5.8 ± 0.5 6.5 ± 0.6 6.6 ± 0.4 6.4 ± 0.6 6.5 ± 0.4 6.3 ± 0.2 8.4 ± 1.6
Chaser 5.0 ± 0.8 5.9 ± 1.0 5.7 ± 0.6 6.7 ± 0.6 6.6 ± 1.2 6.8 ± 1.0 4.8 ± 0.8

Climber 5.7 ± 0.8 6.9 ± 0.8 7.1 ± 0.7 6.5 ± 0.8 7.8 ± 0.2 8.3 ± 0.4 8.1 ± 1.6
DodgeBall 11.7 ± 0.3 2.8 ± 0.7 4.3 ± 0.8 4.7 ± 0.7 3.3 ± 0.5 3.3 ± 0.3 3.8 ± 0.9

Heist 2.4 ± 0.5 4.1 ± 1.0 4.0 ± 0.8 4.0 ± 0.7 3.3 ± 0.2 3.5 ± 0.2 7.7 ± 1.6
Leaper 4.9 ± 0.7 4.3 ± 1.0 5.3 ± 1.1 5.0 ± 0.3 7.3 ± 1.1 7.7 ± 1.0 5.3 ± 1.5
Maze 5.7 ± 0.6 6.1 ± 1.0 6.6 ± 0.8 6.3 ± 0.6 5.5 ± 0.2 5.6 ± 0.3 8.5 ± 1.6
Miner 8.5 ± 0.5 9.4 ± 1.2 9.8 ± 0.6 9.7 ± 0.7 8.6 ± 0.9 9.5 ± 0.4 9.8 ± 0.9

where the lengths of episodes are similar across levels.

The few environments, in which our approach does not
outperform the other augmentation-based methods, share
the commonality that task-relevant layouts remain static
throughout the same run of the game. Since the current
version of DRIBO only considers the mutual information
between the complete input and the encoder output (global
MI (Hjelm et al., 2019)), it may fail to capture local features.
The representations for a sequence of observations within
the same run of the game are treated as globally negative
pairs in DRIBO but they may be locally positive pairs. Thus,
the performance of DRIBO can be further improved by con-
sidering local features (e.g. positions of the layouts) shared
between representations as positive pairs in the mutual in-
formation estimation. In addition, for certain augmentations
like ‘rotate’ that do not remove task-irrelevant information,
DRIBO is expected to be less effective. We leave this inves-
tigation to future work.

5.3. Ablations

Temporal Structure of RL. To investigate whether DRIBO
captures the temporal structure of RL, we conducted further
experiments on DRIBO agents trained using sequences of
different lengths under the natural video setting. Longer
sequences carry more temporal information for DRIBO to
learn. By default, we train DRIBO with sequences of length
32. In this ablation study, we present results of DRIBO
trained using sequences of lengths 3, 6 and 16 respectively
in Figure 5. Using sequences of length 3 is similar to stack-
ing 3 consecutive frames which is a common choice for
training in DMC. Using sequences of length 6 is similar
to the design choice made in PI-SAC (3 steps for the past
and 3 steps for the future). We also include results on using
16-step sequential observations to investigate how DRIBO’s

Figure 5: DRIBO achieves better performance by capturing
the temporal structure of RL from longer training sequences.
Compressing away task-irrelevant information using the
SKL term in DRIBO loss improves performance when the
architecture choice and training configurations are the same.
We perform 5 runs for each method under the natural video
setting. More results can be found in Appendix C.2.

performance changes as the length of the sequences in-
creases. Theoretically, the DRIBO loss provides a lower
bound on the mutual information between sequences of ob-
servations and sequences of latent state representations with

DRIBO achieves better performance in 13 of the 16 
games compared with augmentation-based methods.

[Cobbe et al. ICML 2020]

Procgen: agents are trained on the 
first 200 levels and evaluated on 

unseen levels during testing. 
[Laskin et al. NeurIPS 2020] [Raileanu et al. NeurIPS 2021]
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Table 1: Procgen returns on test levels after training on 25M environment steps. The mean and standard deviation are
computed over 10 seeds.

Env PPO RAD DrAC UCB-DrAC DAAC IDAAC DRIBO

BigFish 4.0 ± 1.2 9.9 ± 1.7 8.7 ± 1.4 9.7 ± 1.0 17.8 ± 1.4 18.5 ± 1.2 10.9 ± 1.6
StarPilot 24.7 ± 3.4 33.4 ± 5.1 29.5 ± 5.4 30.2 ± 2.8 36.4 ± 2.8 37.0 ± 2.3 36.5 ± 3.0
FruitBot 26.7 ± 0.8 27.3 ± 1.8 28.2 ± 0.8 28.3 ± 0.9 28.6 ± 0.6 27.9 ± 0.5 30.8 ± 0.8
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Ninja 5.9 ± 0.7 6.9 ± 0.8 7.0 ± 0.4 6.9 ± 0.6 6.8 ± 0.4 6.8 ± 0.4 9.7 ± 0.7

Plunder 5.0 ± 0.5 8.5 ± 1.2 9.5 ± 1.0 8.9 ± 1.0 20.7 ± 3.3 23.3 ± 1.4 5.8 ± 1.0
CaveFlyer 5.1 ± 0.9 5.1 ± 0.6 6.3 ± 0.8 5.3 ± 0.9 4.6 ± 0.2 5.0 ± 0.6 7.5 ± 1.0
CoinRun 8.5 ± 0.5 9.0 ± 0.8 8.8 ± 0.2 8.5 ± 0.6 9.2 ± 0.2 9.4 ± 0.1 9.2 ± 0.7
Jumper 5.8 ± 0.5 6.5 ± 0.6 6.6 ± 0.4 6.4 ± 0.6 6.5 ± 0.4 6.3 ± 0.2 8.4 ± 1.6
Chaser 5.0 ± 0.8 5.9 ± 1.0 5.7 ± 0.6 6.7 ± 0.6 6.6 ± 1.2 6.8 ± 1.0 4.8 ± 0.8

Climber 5.7 ± 0.8 6.9 ± 0.8 7.1 ± 0.7 6.5 ± 0.8 7.8 ± 0.2 8.3 ± 0.4 8.1 ± 1.6
DodgeBall 11.7 ± 0.3 2.8 ± 0.7 4.3 ± 0.8 4.7 ± 0.7 3.3 ± 0.5 3.3 ± 0.3 3.8 ± 0.9

Heist 2.4 ± 0.5 4.1 ± 1.0 4.0 ± 0.8 4.0 ± 0.7 3.3 ± 0.2 3.5 ± 0.2 7.7 ± 1.6
Leaper 4.9 ± 0.7 4.3 ± 1.0 5.3 ± 1.1 5.0 ± 0.3 7.3 ± 1.1 7.7 ± 1.0 5.3 ± 1.5
Maze 5.7 ± 0.6 6.1 ± 1.0 6.6 ± 0.8 6.3 ± 0.6 5.5 ± 0.2 5.6 ± 0.3 8.5 ± 1.6
Miner 8.5 ± 0.5 9.4 ± 1.2 9.8 ± 0.6 9.7 ± 0.7 8.6 ± 0.9 9.5 ± 0.4 9.8 ± 0.9

where the lengths of episodes are similar across levels.

The few environments, in which our approach does not
outperform the other augmentation-based methods, share
the commonality that task-relevant layouts remain static
throughout the same run of the game. Since the current
version of DRIBO only considers the mutual information
between the complete input and the encoder output (global
MI (Hjelm et al., 2019)), it may fail to capture local features.
The representations for a sequence of observations within
the same run of the game are treated as globally negative
pairs in DRIBO but they may be locally positive pairs. Thus,
the performance of DRIBO can be further improved by con-
sidering local features (e.g. positions of the layouts) shared
between representations as positive pairs in the mutual in-
formation estimation. In addition, for certain augmentations
like ‘rotate’ that do not remove task-irrelevant information,
DRIBO is expected to be less effective. We leave this inves-
tigation to future work.

5.3. Ablations

Temporal Structure of RL. To investigate whether DRIBO
captures the temporal structure of RL, we conducted further
experiments on DRIBO agents trained using sequences of
different lengths under the natural video setting. Longer
sequences carry more temporal information for DRIBO to
learn. By default, we train DRIBO with sequences of length
32. In this ablation study, we present results of DRIBO
trained using sequences of lengths 3, 6 and 16 respectively
in Figure 5. Using sequences of length 3 is similar to stack-
ing 3 consecutive frames which is a common choice for
training in DMC. Using sequences of length 6 is similar
to the design choice made in PI-SAC (3 steps for the past
and 3 steps for the future). We also include results on using
16-step sequential observations to investigate how DRIBO’s

Figure 5: DRIBO achieves better performance by capturing
the temporal structure of RL from longer training sequences.
Compressing away task-irrelevant information using the
SKL term in DRIBO loss improves performance when the
architecture choice and training configurations are the same.
We perform 5 runs for each method under the natural video
setting. More results can be found in Appendix C.2.

performance changes as the length of the sequences in-
creases. Theoretically, the DRIBO loss provides a lower
bound on the mutual information between sequences of ob-
servations and sequences of latent state representations with

DRIBO achieves better performance in 9 of the 16 
games compared with the SOTA method IDAAC.

[Cobbe et al. ICML 2020]

Procgen: agents are trained on the 
first 200 levels and evaluated on 

unseen levels during testing. 
[Raileanu et al. ICML 2021]
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• We propose DRIBO, a new representation learning method that improves DRL 
agents’ robustness to task-irrelevant visual distractions.

Thank you!

github.com/BU-DEPEND-Lab/DRIBO

• State-of-the-art empirical results on robustness against visual distractions and 
generalization performance.

https://github.com/BU-DEPEND-Lab/DRIBO

