

DRIBO: Robust Deep Reinforcement Learning via Multi-View Information Bottleneck

Jiameng Fan and Wenchao Li

tl;dr: a robust representation learning approach for DRL to *extract only task-relevant features from raw pixels* based on the multi-view information bottleneck principle.

github.com/BU-DEPEND-Lab/DRIBO

Train DRL agents that are robust to *task-irrelevant visual distractions*.

Task-irrelevant visual details

temporally relevant visual details

BU

Task-irrelevant

visual details

temporally relevant visual details

Task-irrelevant visual details

Task-relevant visual details

Goal: learn latent state representations that maximize *task-relevant information* while compressing away *task-irrelevant information*.

Sequential nature of RL

 $o_{t=1}$

augmentations

Ideally, multi-view observations share *the same task-relevant information* while all the information *not shared by them is task-irrelevant*

$$I\left(S_{1:T}^{(1)}; O_{1:T}^{(1)} \middle| A_{1:T}\right) = \frac{I\left(S_{1:T}^{(1)}; O_{1:T}^{(1)} \middle| A_{1:T}, O_{1:T}^{(2)}\right) + \frac{I\left(O_{1:T}^{(2)}; S_{1:T}^{(1)} \middle| A_{1:T}\right)}{\mathsf{Task-irrelevant}} + \frac{I\left(O_{1:T}^{(2)}; S_{1:T}^{(1)} \middle| A_{1:T}\right)}{\mathsf{Task-relevant}}$$

Task-irrelevant

• Lower bound of the sequential mutual information (Theorem 1)

$$I(S_{1:T}; O_{1:T} | A_{1:T}) \ge \sum_{t=1}^{T} I(S_t; O_t | S_{t-1}, A_{t-1})$$

• Multi-view information bottleneck loss

$$\begin{aligned} \mathcal{L}_{IB}^{(1)} &= -\sum_{t} \left(I\left(S_{t}^{(1)}; O_{t}^{(1)} \middle| S_{t-1}^{(1)}, A_{t-1}, O_{t}^{(2)}\right) - \lambda_{1} I\left(O_{t}^{(2)}; S_{t}^{(1)} \middle| S_{t-1}^{(1)}, A_{t-1}\right) \right) \\ \mathcal{L}_{IB}^{(2)} &= -\sum_{t} \left(I\left(S_{t}^{(2)}; O_{t}^{(2)} \middle| S_{t-1}^{(2)}, A_{t-1}, O_{t}^{(1)}\right) - \lambda_{2} I\left(O_{t}^{(1)}; S_{t}^{(2)} \middle| S_{t-1}^{(2)}, A_{t-1}\right) \right) \end{aligned}$$

• Lower bound of the sequential mutual information (Theorem 1)

$$I(S_{1:T}; O_{1:T} | A_{1:T}) \ge \sum_{t=1}^{T} I(S_t; O_t | S_{t-1}, A_{t-1})$$

• Multi-view information bottleneck loss

$$\mathcal{L}_{IB}^{(1)} = -\sum_{t} \left(I\left(S_{t}^{(1)}; O_{t}^{(1)} \middle| S_{t-1}^{(1)}, A_{t-1}, O_{t}^{(2)}\right) - \lambda_{1} I\left(O_{t}^{(2)}; S_{t}^{(1)} \middle| S_{t-1}^{(1)}, A_{t-1}\right) \right)$$

$$\mathcal{L}_{IB}^{(2)} = -\sum_{t} \left(I\left(S_{t}^{(2)}; O_{t}^{(2)} \middle| S_{t-1}^{(2)}, A_{t-1}, O_{t}^{(1)}\right) - \lambda_{2} I\left(O_{t}^{(1)}; S_{t}^{(2)} \middle| S_{t-1}^{(2)}, A_{t-1}\right) \right)$$

Compress away task-irrelevant information

DIRBO loss: $\mathcal{L}_{t}(\theta; \beta) = -I_{\theta} \left(S_{t}^{(1)}; S_{t}^{(2)} | S_{t-1}, A_{t-1} \right)$ $+ \beta D_{SKL} \left(p_{\theta}(s_{t}^{(1)} | o_{t}^{(1)}, s_{t-1}^{(1)}, a_{t-1}) || p_{\theta}(s_{t}^{(2)} | o_{t}^{(2)}, s_{t-1}^{(2)}, a_{t-1}) \right)$

DIRBO loss: $\mathcal{L}_{t}(\theta; \beta) = -I_{\theta}\left(S_{t}^{(1)}; S_{t}^{(2)}|S_{t-1}, A_{t-1}\right)$ Shared Divergence between the information representations $+\beta D_{SKL}\left(p_{\theta}(s_{t}^{(1)}|o_{t}^{(1)}, s_{t-1}^{(1)}, a_{t-1})||p_{\theta}(s_{t}^{(2)}|o_{t}^{(2)}, s_{t-1}^{(2)}, a_{t-1})\right)$

[Tassa et al. arXiv 2018] [Kay et al. arXiv 2017] [Zhang et al. arXiv 2018]

Clean setting (no background change)

"Arranging flowers" natural video setting (training)

natural video setting (testing)

DeepMind Control Suite

Averaged 68% improvement compared with reconstructionbased methods (DreamerV2, SLAC)

[Hafner et al. ICLR 2021] [Lee et al. NeurIPS 2020]

- Averaged 68% improvement
 compared with reconstruction based methods (DreamerV2, SLAC)
- Averaged 31% improvement compared with RAD and CURL

[Laskin et al. NeurIPS 2020] [Laskin et al. ICML 2020]

- Averaged 68% improvement compared with reconstructionbased methods (SLAC, DreamerV2)
- Averaged 31% improvement compared with RAD and CURL
- Averaged 41% improvement compared with DBC and PI-SAC which also explicitly compress away task-irrelevant information

[Zhang et al. ICLR 2021] [Lee et al. NeurIPS 2020]

DRIBO learns latent states that *are neighboring in the embedding space with similar reward values*.

DRIBO learns encoders that *focus on the robots' body* and *ignore irrelevant visual details in the background*.

Spatial attention maps [Zagoruyko et al. ICLR 2017] ²³

DRIBO results: generalization to unseen environments

Procgen: agents are *trained on the first 200 levels* and *evaluated on unseen levels during testing*.

[Cobbe et al. ICML 2020]

DRIBO results: generalization to unseen environments

Env	PPO	RAD	DrAC	UCB-DrAC	DAAC	IDAAC	DRIBO
BigFish	4.0 ± 1.2	9.9 ± 1.7	8.7 ± 1.4	9.7 ± 1.0	17.8 ± 1.4	18.5 ± 1.2	10.9 ± 1.6
StarPilot	24.7 ± 3.4	33.4 ± 5.1	29.5 ± 5.4	30.2 ± 2.8	36.4 ± 2.8	$\textbf{37.0} \pm \textbf{2.3}$	36.5 ± 3.0
FruitBot	26.7 ± 0.8	27.3 ± 1.8	28.2 ± 0.8	28.3 ± 0.9	28.6 ± 0.6	27.9 ± 0.5	$\textbf{30.8} \pm \textbf{0.8}$
BossFight	7.7 ± 1.0	7.9 ± 0.6	7.5 ± 0.8	8.3 ± 0.8	9.6 ± 0.5	9.8 ± 0.6	$\textbf{12.0} \pm \textbf{0.5}$
Ninja	5.9 ± 0.7	6.9 ± 0.8	7.0 ± 0.4	6.9 ± 0.6	6.8 ± 0.4	6.8 ± 0.4	$\textbf{9.7} \pm \textbf{0.7}$
Plunder	5.0 ± 0.5	8.5 ± 1.2	9.5 ± 1.0	8.9 ± 1.0	20.7 ± 3.3	$\textbf{23.3} \pm \textbf{1.4}$	5.8 ± 1.0
CaveFlyer	5.1 ± 0.9	5.1 ± 0.6	6.3 ± 0.8	5.3 ± 0.9	4.6 ± 0.2	5.0 ± 0.6	7.5 ± 1.0
CoinRun	8.5 ± 0.5	9.0 ± 0.8	8.8 ± 0.2	8.5 ± 0.6 Ⅰ	9.2 ± 0.2	$\textbf{9.4} \pm \textbf{0.1}$	9.2 ± 0.7
Jumper	5.8 ± 0.5	6.5 ± 0.6	6.6 ± 0.4	6.4 ± 0.6	6.5 ± 0.4	6.3 ± 0.2	$\textbf{8.4} \pm \textbf{1.6}$
Chaser	5.0 ± 0.8	5.9 ± 1.0	5.7 ± 0.6	6.7 ± 0.6	6.6 ± 1.2	$\textbf{6.8} \pm \textbf{1.0}$	4.8 ± 0.8
Climber	5.7 ± 0.8	6.9 ± 0.8	7.1 ± 0.7	6.5 ± 0.8	7.8 ± 0.2	$\textbf{8.3} \pm \textbf{0.4}$	8.1 ± 1.6
DodgeBall	$\textbf{11.7} \pm \textbf{0.3}$	2.8 ± 0.7	4.3 ± 0.8	4.7 ± 0.7	3.3 ± 0.5	3.3 ± 0.3	3.8 ± 0.9
Heist	2.4 ± 0.5	4.1 ± 1.0	4.0 ± 0.8	4.0 ± 0.7	3.3 ± 0.2	3.5 ± 0.2	$\textbf{7.7} \pm \textbf{1.6}$
Leaper	4.9 ± 0.7	4.3 ± 1.0	5.3 ± 1.1	5.0 ± 0.3	7.3 ± 1.1	$\textbf{7.7} \pm \textbf{1.0}$	5.3 ± 1.5
Maze	5.7 ± 0.6	6.1 ± 1.0	6.6 ± 0.8	6.3 ± 0.6	5.5 ± 0.2	5.6 ± 0.3	$\textbf{8.5} \pm \textbf{1.6}$
Miner	8.5 ± 0.5	9.4 ± 1.2	$\textbf{9.8} \pm \textbf{0.6}$	9.7 ± 0.7	8.6 ± 0.9	9.5 ± 0.4	$\textbf{9.8} \pm \textbf{0.9}$

Procgen: agents are *trained on the first 200 levels* and *evaluated on unseen levels during testing*.

DRIBO achieves better performance in 13 of the 16 games compared with augmentation-based methods.

DRIBO results: generalization to unseen environments

Env	PPO	RAD	DrAC	UCB-DrAC	DAAC	IDAAC	DRIBO
BigFish	4.0 ± 1.2	9.9 ± 1.7	8.7 ± 1.4	9.7 ± 1.0	17.8 ± 1.4	18.5 ± 1.2	10.9 ± 1.6
StarPilot	24.7 ± 3.4	33.4 ± 5.1	29.5 ± 5.4	30.2 ± 2.8	36.4 ± 2.8	37.0 ± 2.3	36.5 ± 3.0
FruitBot	26.7 ± 0.8	27.3 ± 1.8	28.2 ± 0.8	28.3 ± 0.9	28.6 ± 0.6	27.9 ± 0.5	$\textbf{30.8} \pm \textbf{0.8}$
BossFight	7.7 ± 1.0	7.9 ± 0.6	7.5 ± 0.8	8.3 ± 0.8	9.6 ± 0.5	9.8 ± 0.6	$\textbf{12.0} \pm \textbf{0.5}$
Ninja	5.9 ± 0.7	6.9 ± 0.8	7.0 ± 0.4	6.9 ± 0.6	6.8 ± 0.4	6.8 ± 0.4	$\textbf{9.7} \pm \textbf{0.7}$
Plunder	5.0 ± 0.5	8.5 ± 1.2	9.5 ± 1.0	8.9 ± 1.0	20.7 ± 3.3	$\textbf{23.3} \pm \textbf{1.4}$	5.8 ± 1.0
CaveFlyer	5.1 ± 0.9	5.1 ± 0.6	6.3 ± 0.8	5.3 ± 0.9	4.6 ± 0.2	5.0 ± 0.6	$\textbf{7.5} \pm \textbf{1.0}$
CoinRun	8.5 ± 0.5	9.0 ± 0.8	8.8 ± 0.2	8.5 ± 0.6	9.2 ± 0.2	9.4 ± 0.1	9.2 ± 0.7
Jumper	5.8 ± 0.5	6.5 ± 0.6	6.6 ± 0.4	6.4 ± 0.6	6.5 ± 0.4	6.3 ± 0.2	$\textbf{8.4} \pm \textbf{1.6}$
Chaser	5.0 ± 0.8	5.9 ± 1.0	5.7 ± 0.6	6.7 ± 0.6	6.6 ± 1.2	6.8 ± 1.0	4.8 ± 0.8
Climber	5.7 ± 0.8	6.9 ± 0.8	7.1 ± 0.7	6.5 ± 0.8	7.8 ± 0.2	$\textbf{8.3}\pm\textbf{0.4}$	8.1 ± 1.6
DodgeBall	$\textbf{11.7} \pm \textbf{0.3}$	2.8 ± 0.7	4.3 ± 0.8	4.7 ± 0.7	3.3 ± 0.5	3.3 ± 0.3	3.8 ± 0.9
Heist	2.4 ± 0.5	4.1 ± 1.0	4.0 ± 0.8	4.0 ± 0.7	3.3 ± 0.2	3.5 ± 0.2	$\textbf{7.7} \pm \textbf{1.6}$
Leaper	4.9 ± 0.7	4.3 ± 1.0	5.3 ± 1.1	5.0 ± 0.3	7.3 ± 1.1	7.7 ± 1.0	5.3 ± 1.5
Maze	5.7 ± 0.6	6.1 ± 1.0	6.6 ± 0.8	6.3 ± 0.6	5.5 ± 0.2	5.6 ± 0.3	$\textbf{8.5} \pm \textbf{1.6}$
Miner	8.5 ± 0.5	9.4 ± 1.2	$\textbf{9.8} \pm \textbf{0.6}$	9.7 ± 0.7	8.6 ± 0.9	9.5 ± 0.4	$\textbf{9.8} \pm \textbf{0.9}$

Procgen: agents are *trained on the first 200 levels* and *evaluated on unseen levels during testing*.

DRIBO achieves better performance in *9 of the 16* games compared with the SOTA method IDAAC.

Contributions

- We propose DRIBO, a new representation learning method that improves DRL agents' robustness to task-irrelevant visual distractions.
- State-of-the-art empirical results on *robustness against visual distractions* and *generalization performance*.

