A Random Matrix Analysis of Data Stream Clustering: Coping With Limited Memory Resources

Hugo Lebeau¹ Romain Couillet¹ Florent Chatelain²

¹Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France ²Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Iab, 38000 Grenoble, France

39th International Conference on Machine Learning July 17th – 23rd, 2022 Baltimore, Maryland, USA

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

$$\mathbf{x}_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$$

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

Memory

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

Memory

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

・ロト・日本・日本・日本・日本・日本

2/6

Memory

Clustering?

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

Memory

• **Clustering** on the $n \ge L$ previous points $\mathbf{X} = \begin{bmatrix} \mathbf{x}_{t-n+1} & \mathbf{x}_{t-n+2} & \dots & \mathbf{x}_t \end{bmatrix} \in \mathbb{R}^{p \times n}$

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

Memory

• Clustering on the $n \ge L$ previous points $\mathbf{X} = \begin{bmatrix} \mathbf{x}_{t-n+1} & \mathbf{x}_{t-n+2} & \dots & \mathbf{x}_t \end{bmatrix} \in \mathbb{R}^{p \times n}$ $\begin{pmatrix} n, p, L \rightarrow +\infty \\ p/n \rightarrow c \\ (2L-1)/n \rightarrow c \end{pmatrix}$

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

2/6

Memory

• Clustering on the $n \ge L$ previous points $\mathbf{X} = \begin{bmatrix} \mathbf{x}_{t-n+1} & \mathbf{x}_{t-n+2} & \dots & \mathbf{x}_t \end{bmatrix} \in \mathbb{R}^{p \times n}$ $\begin{pmatrix} n, p, L \rightarrow +\infty \\ p/n \rightarrow c \\ (2L-1)/n \rightarrow c \end{pmatrix}$

• Kernel matrix

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

2/6

Memory

- Clustering on the $n \ge L$ previous points $\mathbf{X} = \begin{bmatrix} \mathbf{x}_{t-n+1} & \mathbf{x}_{t-n+2} & \dots & \mathbf{x}_t \end{bmatrix} \in \mathbb{R}^{p \times n}$ $\begin{pmatrix} n, p, L \rightarrow +\infty \\ p/n \rightarrow c \\ (2L-1)/n \rightarrow c \end{pmatrix}$
- Kernel matrix

• Observed data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t, \dots \in \mathbb{R}^p$

 $\mathbf{x}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_{\boldsymbol{p}})$

Memory

- **Clustering** on the $n \ge L$ previous points $\mathbf{X} = \begin{bmatrix} \mathbf{x}_{t-n+1} & \mathbf{x}_{t-n+2} & \dots & \mathbf{x}_t \end{bmatrix} \in \mathbb{R}^{p \times n}$ $\begin{pmatrix} n, p, L \rightarrow +\infty \\ p/n \rightarrow c \\ (2L-1)/n \rightarrow c \end{pmatrix}$
- Kernel matrix

• Size-*L* memory \rightsquigarrow batch clustering vs. $\mathbf{K}_{L} = \frac{1}{p} \mathbf{X}^{\top} \mathbf{X} \odot \mathbf{T}$

- Size-*L* memory \rightsquigarrow batch clustering vs. $\mathbf{K}_L = \frac{1}{p} \mathbf{X}^{\top} \mathbf{X} \odot \mathbf{T}$
- Spectral clustering phase transition ($n/p = 100 \iff c = 0.01$)

- Size-*L* memory \rightsquigarrow batch clustering vs. $\mathbf{K}_{L} = \frac{1}{p} \mathbf{X}^{\top} \mathbf{X} \odot \mathbf{T}$
- Spectral clustering phase transition ($n/p = 100 \iff c = 0.01$)

- Size-*L* memory \rightsquigarrow batch clustering vs. $\mathbf{K}_{L} = \frac{1}{p} \mathbf{X}^{\top} \mathbf{X} \odot \mathbf{T}$
- Spectral clustering phase transition ($n/p = 100 \iff c = 0.01$)

- Size-*L* memory \rightsquigarrow batch clustering vs. $\mathbf{K}_{L} = \frac{1}{p} \mathbf{X}^{\top} \mathbf{X} \odot \mathbf{T}$
- Spectral clustering phase transition ($n/p = 100 \iff c = 0.01$)

• BigGAN images (VGG features, p = 4096) T = 20000

• **BigGAN images (**VGG features, *p* = 4096)

 $T = 20\,000$

• BigGAN images (VGG features, p = 4096) T = 20000

<ロト < 部 > < E > < E > 2 の < 4/6

• BigGAN images (VGG features, p = 4096) T = 20000

• BigGAN images (VGG features, p = 4096) T = 20000

• BigGAN images (VGG features, p = 4096) T = 20000

• Fashion-MNIST images (raw, p = 784)

 $T = 14\,000$

• Fashion-MNIST images (raw, p = 784)

 $T = 14\,000$

A Random Matrix Analysis of Data Stream Clustering: Coping With Limited Memory Resources

Hugo Lebeau¹ Romain Couillet¹ Florent Chatelain²

¹Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France ²Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Iab, 38000 Grenoble, France

39th International Conference on Machine Learning July 17th – 23rd, 2022 Baltimore, Maryland, USA