Modeling Irregular Time Series with Continuous Recurrent Units

Mona Schirmer^{1,†}, Mazin Eltayeb², Stefan Lessman¹, Maja Rudolph³

1: Humboldt Universität zu Berlin, Germany

2: Bosch Center for AI, Germany

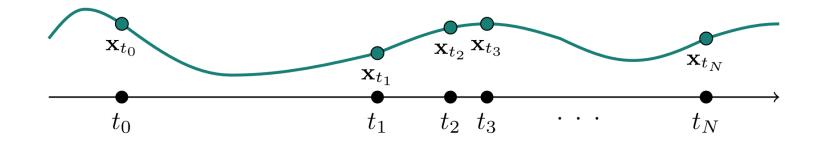
3: Bosch Center for AI, USA

t: Work done during an internship at Bosch Center for AI

Modeling Irregularly-Sampled Time Series Motivation

Goal: Model a time-series $\mathbf{x}_{\mathcal{T}} = [\mathbf{x}_t | t \in \mathcal{T} = \{t_0, t_1, \dots, t_N\}]$ whose observation times

 $\mathcal{T} = \{t_0, t_1, \cdots t_N\}$ can occur at irregular time intervals.



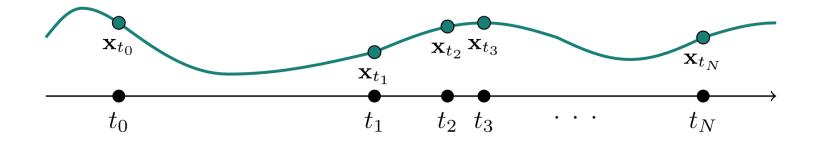
Modeling Irregularly-Sampled Time Series Motivation

Goal: Model a time-series $\mathbf{x}_{\mathcal{T}} = [\mathbf{x}_t | t \in \mathcal{T} = \{t_0, t_1, \dots, t_N\}]$ whose observation times

 $\mathcal{T} = \{t_0, t_1, \cdots t_N\}$ can occur at irregular time intervals.

Challenges:

- Data from continuous processes
- Noisy and partially observed inputs
- ► Non-linear dynamics



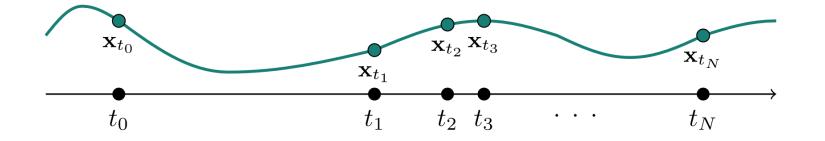
Modeling Irregularly-Sampled Time Series Motivation

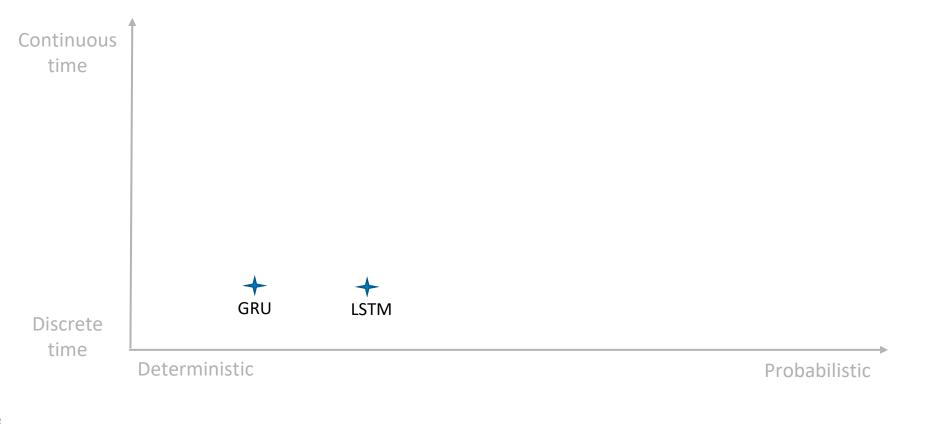
Goal: Model a time-series $\mathbf{x}_{\mathcal{T}} = [\mathbf{x}_t | t \in \mathcal{T} = \{t_0, t_1, \dots t_N\}]$ whose observation times $\mathcal{T} = \{t_0, t_1, \dots t_N\}$ can occur at irregular time intervals.

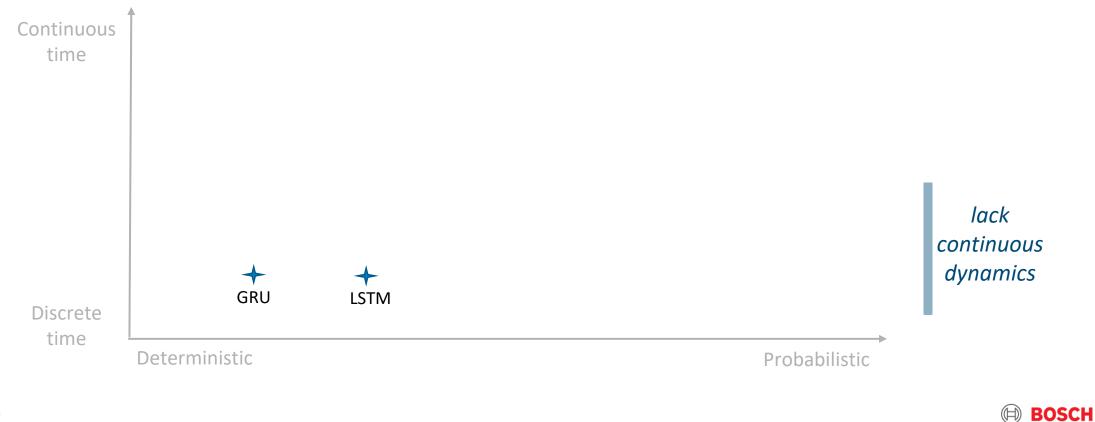
Challenges:

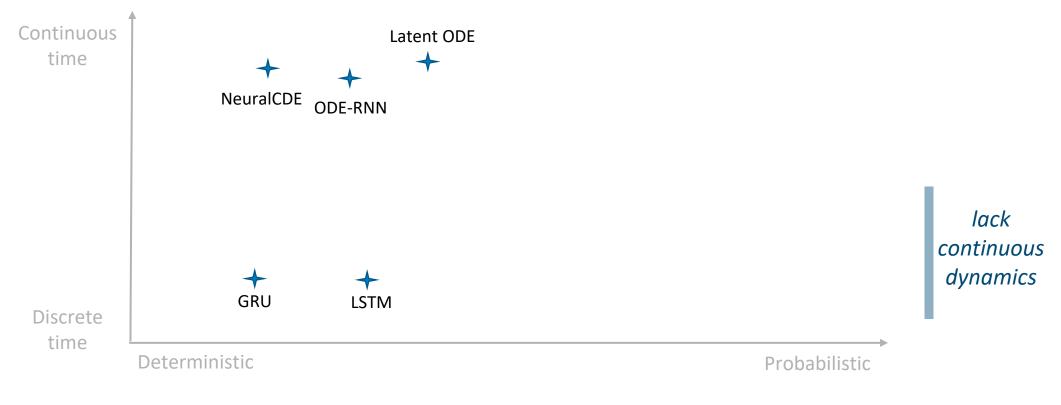
- Data from continuous processes
- Noisy and partially observed inputs
- ► Non-linear dynamics

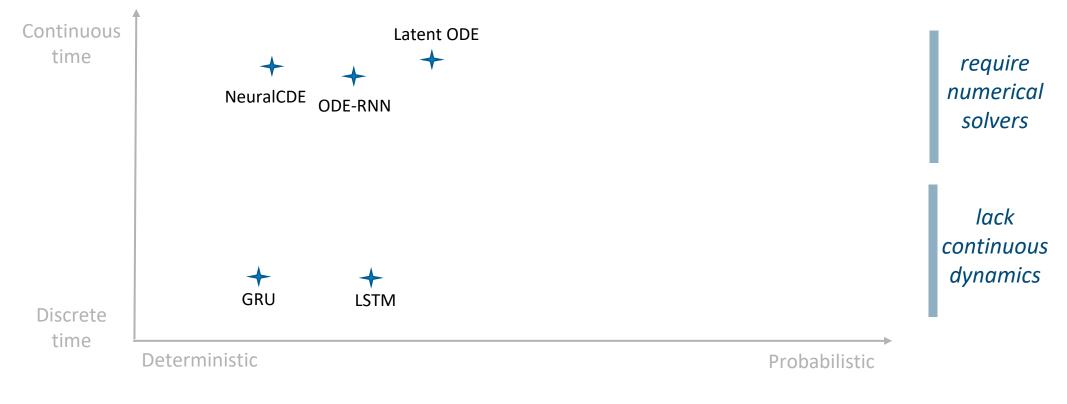
- \rightarrow Continuous state dynamics
- \rightarrow Uncertainty handling
- \rightarrow Expressive and flexible functions

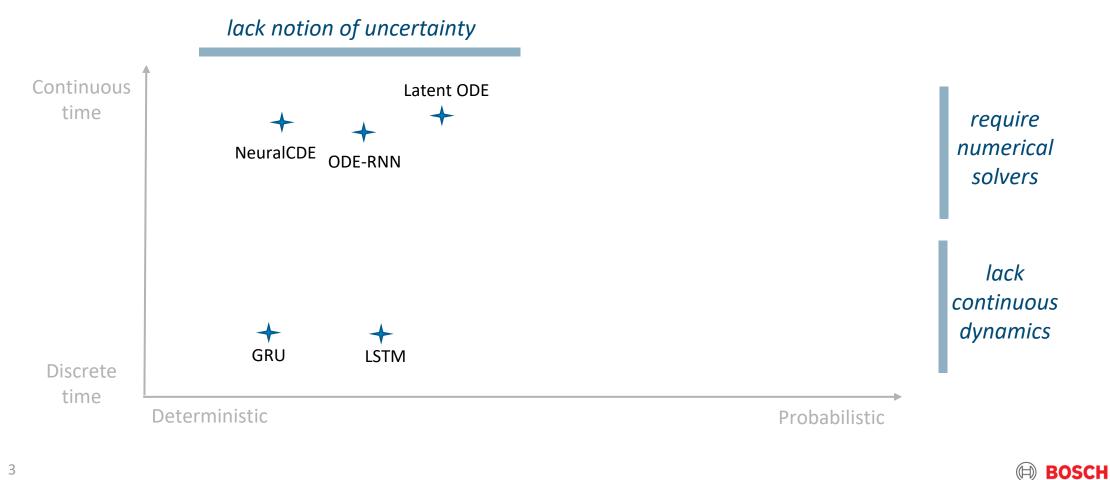


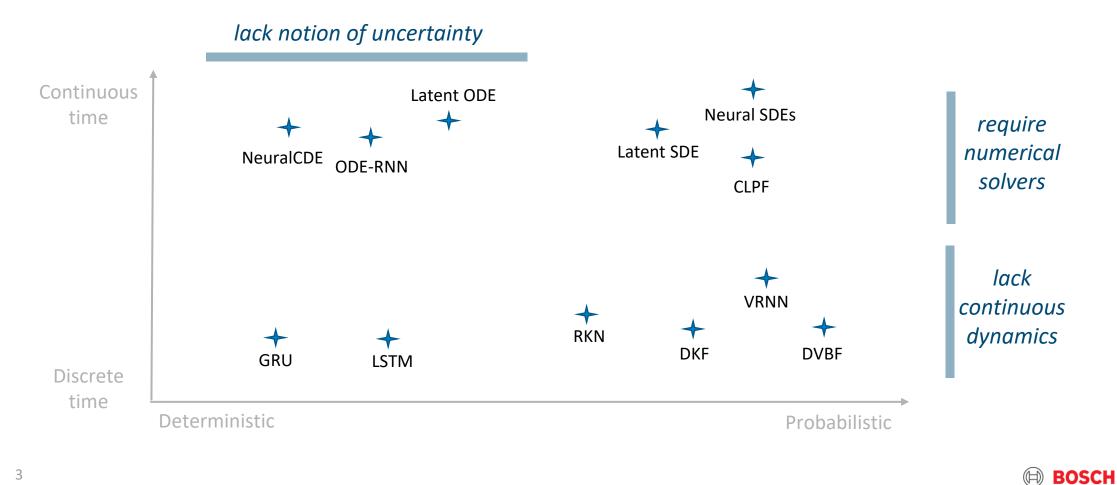


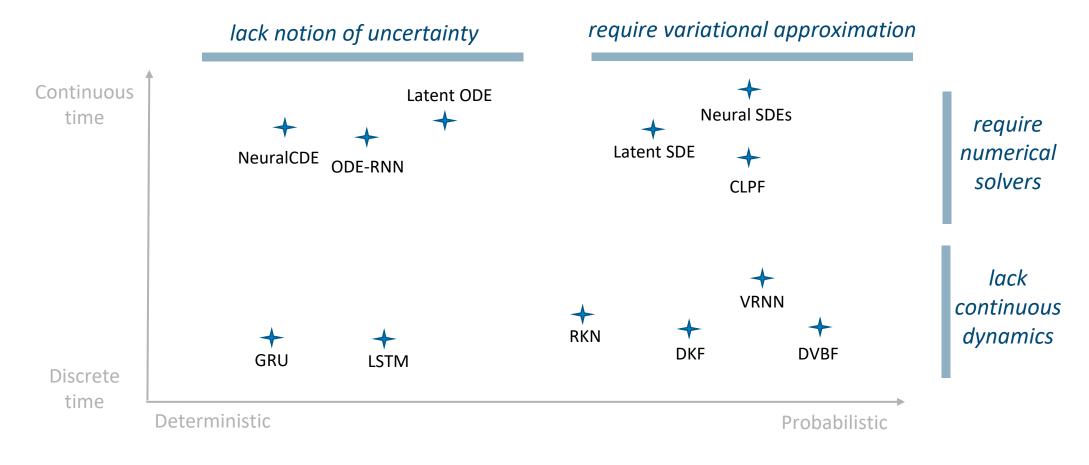




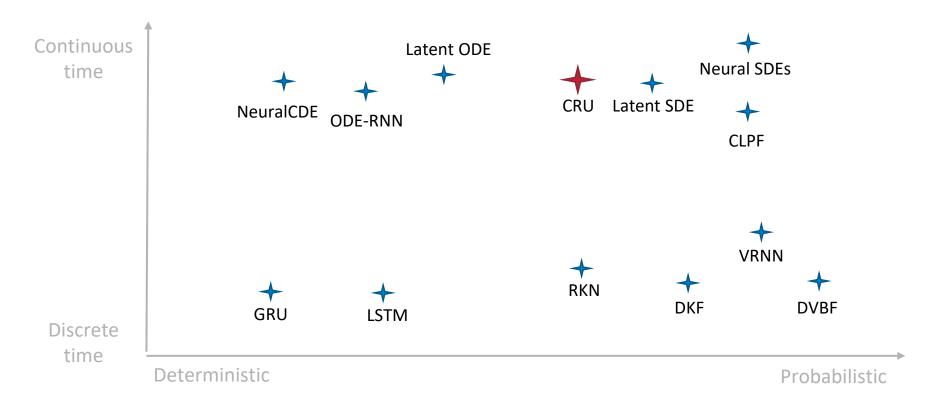








BOSCH



Continuous Recurrent Unit (CRU) is a probabilistic recurrent network

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with continuous state evolutions

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with **continuous** state evolutions propagated in **closed form**

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with **continuous** state evolutions propagated in **closed form**, an **uncertainty-driven gating mechanism**

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with **continuous** state evolutions propagated in **closed form**, an **uncertainty-driven gating mechanism** and an architecture that is trainable **end-to-end**.

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with **continuous** state evolutions propagated in **closed form**, an **uncertainty-driven gating mechanism** and an architecture that is trainable **end-to-end**.

CRU assumes a continuous latent state $\, {f z} \,$ that evolves according to a linear SDE

$$d\mathbf{z} = \mathbf{A}\mathbf{z}dt + \mathbf{G}d\boldsymbol{\beta}$$

with transition matrix $\, {f A} \,$ and diffusion coefficient $\, {f G} \,$

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with **continuous** state evolutions propagated in **closed form**, an **uncertainty-driven gating mechanism** and an architecture that is trainable **end-to-end**.

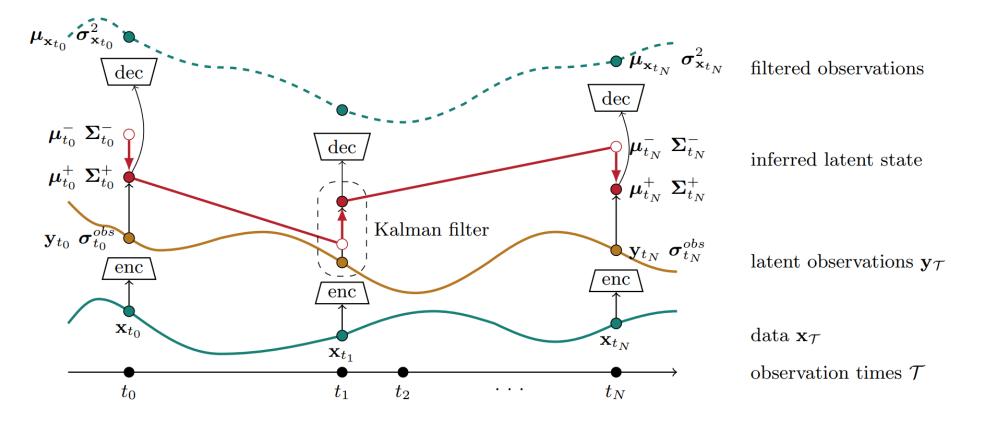
CRU assumes a continuous latent state \mathbf{z} that evolves according to a linear SDE

$$d\mathbf{z} = \mathbf{A}\mathbf{z}dt + \mathbf{G}d\boldsymbol{\beta}$$

with transition matrix ${f A}$ and diffusion coefficient ${f G}$ and discrete Gaussian latent observations

$$\mathbf{y}_t \sim \mathcal{N}(\mathbf{H}\mathbf{z}_t, (\boldsymbol{\sigma}_t^{\mathrm{obs}})^2 \mathbf{I})$$

Continuous Recurrent Unit Architecture



BOSCH

Continuous Recurrent Unit Modeling flexibility and complexity

Increased flexibility with locally linear state transitions

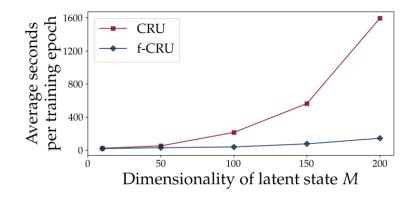
$$\mathbf{A}_t = \sum_{k=1}^K \alpha_t^{(k)} \mathbf{A}^{(k)}, \qquad ext{with } \boldsymbol{\alpha}_t = w_\psi(\boldsymbol{\mu}_t^+)$$

Continuous Recurrent Unit Modeling flexibility and complexity

Increased flexibility with locally linear state transitions

$$\mathbf{A}_t = \sum_{k=1}^K \alpha_t^{(k)} \mathbf{A}^{(k)}, \qquad ext{with } \boldsymbol{\alpha}_t = w_\psi(\boldsymbol{\mu}_t^+)$$

Reduced complexity with a fast implementation f-CRU

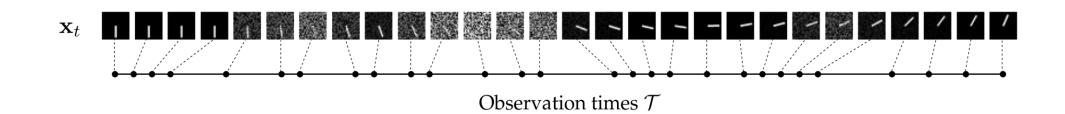


Continuous Recurrent Unit Experimental study

- Best performance in 4 out of 6 comparisons
- Gating mechanism weights noisy and partially observed inputs accurately

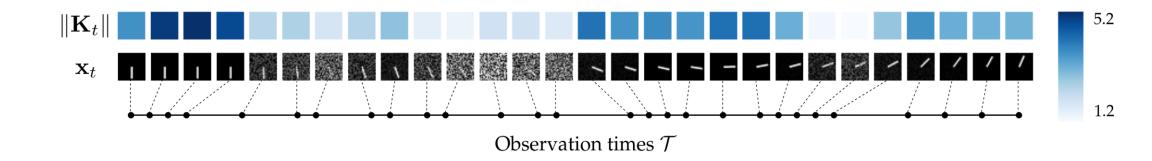
Continuous Recurrent Unit Experimental study

- Best performance in 4 out of 6 comparisons
- Gating mechanism weights noisy and partially observed inputs accurately



Continuous Recurrent Unit Experimental study

- Best performance in 4 out of 6 comparisons
- Gating mechanism weights noisy and partially observed inputs accurately



THANK YOU

Paper

Correspondence: <u>mona.schirmer@ensae.fr</u> <u>maja.rudolph@us.bosch.com</u>