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Problem formulation



Stochastic convex optimization (SCO)

A fundamental optimization problem in machine learning.

• n : sample size.

• D : an unknown distribution over X ⊆ Rd .

• W: parameter space, a subset of Rd .

• ℓ : W ×X → R+, loss function.

• LD(w) : Ex∼D [ℓ(w , x)], population risk.
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Stochastic convex optimization (SCO)

A fundamental optimization problem in machine learning.

• n : sample size.

• D : an unknown distribution over X ⊆ Rd .

• W: parameter space, a subset of Rd .

• ℓ : W ×X → R+, loss function.

• LD(w) : Ex∼D [ℓ(w , x)], population risk.

Goal: given n i.i.d. samples from an unknown distribution

D, find ŵ to minimize

LD(ŵ)− min
w∗∈W

LD(w
∗).
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Stochastic convex optimization (SCO)

Many applications in supervised machine learning and statistics.

(a) SVM (b) Neural network
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Privacy

Data may contain sensitive information.

(c) Navigation (d) Medical data

We want to protect the privacy while learning from samples.
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Differential privacy (DP) [Dwork et al., 2006]

f̂ is (ε, δ)-DP for any D1 and D2, with dHam(D1,D2) ≤ 1, for all

measurable S ,

∀S , Pr
(
f̂ (D1) ∈ S

)
≤ eε · Pr

(
f̂ (D2) ∈ S

)
+ δ.

Pure DP: δ = 0; approximate DP: δ ̸= 0
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Concentrated Differential Privacy [Bun and Steinke, 2016]

f̂ is ε2-CDP if for any D1 and D2, with dHam(D1,D2) ≤ 1,

∀α ∈ (1,∞),Dα

(
f̂ (D1), f̂ (D2)

)
≤ ε2α,

where Dα

(
f̂ (D1), f̂ (D2)

)
is the α-Rényi divergence.

ε2-CDP lies between (O(ε), 0)-DP and (O(ε), δ)-DP.
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Gradients can be unbounded!

• ℓ is usually assumed to be Lipschitz, i.e., ∥∇ℓ(w , x)∥2 is

bounded for ∀w , x [Bassily et al., 2014, Bassily et al., 2019].

• Convenient for analysis, but unrealistic in practice.

• Following [Wang et al., 2020] and [Holland, 2019], we

assume heavy-tailed gradients:
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• Convenient for analysis, but unrealistic in practice.

• Following [Wang et al., 2020] and [Holland, 2019], we

assume heavy-tailed gradients:

Let D be a distribution over Rd . We assume for every w ∈ W ,

Ex∈D

[
|⟨∇ℓ(w , x), ej⟩|k

]
≤ 1, ∀j ∈ [d ],

where ej is the j-th standard basis vector.
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Gradients can be unbounded!

Let D be a distribution over Rd . We assume for every w ∈ W ,

Ex∼D

[
|⟨∇ℓ(w , x), ej⟩|k

]
≤ 1,∀j ∈ [d ],

where ej is the j-th standard basis vector.

• The k-th moment of each dimension is bounded.

• Stronger assumption when k increases.

• We assume k = 2 for simplicity.
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CDP SCO with heavy-tailed gradients

Goal: given n i.i.d. samples from an unknown distribution

D, and the gradient distribution satisfying the heavy-tailed

assumption, we want to design a ε2-CDP algorithm wpriv

that minimizes

LD(w
priv )− min

w∗∈W
LD(w

∗).
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Results



ε2-CDP SCO with heavy-tailed gradients

Convex setting:

• Non-private: Θ

(√
d
n

)
[Holland, 2019].

• Previous work: Õ

(
d

(ε2n)
1
3

)
[Wang et al., 2020].

• This work: Õ
(

d√
n
+ d√

εn

)
, Ω

(√
d
n + d

3
4√
εn

)
.
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(
d
n + d

3
2

εn

)
, Ω

(
d
n + d

3
2

εn

)
.

• Tight up to a logarithmic factor.

10



ε2-CDP SCO with heavy-tailed gradients

Convex setting:

• Non-private: Θ

(√
d
n

)
[Holland, 2019].

• Previous work: Õ
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Our techniques



CDP mean estimation

• Given n i.i.d. samples from an unknown heavy-tailed

distribution D over Rd , privately estimate the distribution

mean under ℓ2 distance.

• Heavy-tailed assumption: EX∼D
[
|⟨X , ej⟩|2

]
≤ 1, ∀j ∈ [d ].

• ε2-CDP result: Θ

(√
d
n + d

3
4√
εn

)
.

• ε-DP result: Θ

(√
d
n + d√

εn

)
.

• A new separation between pure DP and approximate DP!

• The first tight results for DP mean estimation with

heavy-tailed data.

11



CDP mean estimation

• Given n i.i.d. samples from an unknown heavy-tailed

distribution D over Rd , privately estimate the distribution

mean under ℓ2 distance.

• Heavy-tailed assumption: EX∼D
[
|⟨X , ej⟩|2

]
≤ 1, ∀j ∈ [d ].

• ε2-CDP result: Θ

(√
d
n + d

3
4√
εn

)
.

• ε-DP result: Θ

(√
d
n + d√

εn

)
.

• A new separation between pure DP and approximate DP!

• The first tight results for DP mean estimation with

heavy-tailed data.

11



CDP mean estimation

• Given n i.i.d. samples from an unknown heavy-tailed

distribution D over Rd , privately estimate the distribution

mean under ℓ2 distance.

• Heavy-tailed assumption: EX∼D
[
|⟨X , ej⟩|2

]
≤ 1, ∀j ∈ [d ].

• ε2-CDP result: Θ

(√
d
n + d

3
4√
εn

)
.

• ε-DP result: Θ

(√
d
n + d√

εn

)
.

• A new separation between pure DP and approximate DP!

• The first tight results for DP mean estimation with

heavy-tailed data.

11



CDP mean estimation

• Given n i.i.d. samples from an unknown heavy-tailed

distribution D over Rd , privately estimate the distribution

mean under ℓ2 distance.

• Heavy-tailed assumption: EX∼D
[
|⟨X , ej⟩|2

]
≤ 1, ∀j ∈ [d ].

• ε2-CDP result: Θ

(√
d
n + d

3
4√
εn

)
.

• ε-DP result: Θ

(√
d
n + d√

εn

)
.

• A new separation between pure DP and approximate DP!

• The first tight results for DP mean estimation with

heavy-tailed data.

11



CDP mean estimation

• Given n i.i.d. samples from an unknown heavy-tailed

distribution D over Rd , privately estimate the distribution

mean under ℓ2 distance.

• Heavy-tailed assumption: EX∼D
[
|⟨X , ej⟩|2

]
≤ 1, ∀j ∈ [d ].

• ε2-CDP result: Θ

(√
d
n + d

3
4√
εn

)
.

• ε-DP result: Θ

(√
d
n + d√

εn

)
.

• A new separation between pure DP and approximate DP!

• The first tight results for DP mean estimation with

heavy-tailed data.

11



CDP mean estimation

• Given n i.i.d. samples from an unknown heavy-tailed

distribution D over Rd , privately estimate the distribution

mean under ℓ2 distance.

• Heavy-tailed assumption: EX∼D
[
|⟨X , ej⟩|2

]
≤ 1, ∀j ∈ [d ].

• ε2-CDP result: Θ

(√
d
n + d

3
4√
εn

)
.

• ε-DP result: Θ

(√
d
n + d√

εn

)
.

• A new separation between pure DP and approximate DP!

• The first tight results for DP mean estimation with

heavy-tailed data.

11



CDP mean estimation (upper bound)

• We generalize the idea and analysis

from [Kamath et al., 2020], which has a slightly different

assumption.

• Intuitively, the algorithm outputs
∑

x clip(x) + N(0, σ2Id).

• Clipping decides both bias and variance (σ2).

• Larger clipping range leads to less bias and higher variance.

• Smaller clipping range leads to larger bias and less variance.

• Wisely select the clipping range to balance the bias and

variance!
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CDP SCO upper bound (convex)

Our algorithm is an adaption of full gradient descent.

• Initialize w0 ∈ W.

• Let Gt = MeanOracle({∇ℓ(w t−1, xi )}i∈[n]).
• w t = ProjW(w t−1 − ηt−1Gt)
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• Let Gt = MeanOracle({∇ℓ(w t−1, xi )}i∈[n]).
• w t = ProjW(w t−1 − ηt−1Gt)

Theorem (privacy)

Our CDP SCO algorithm satisfies ε2-CDP suppose the mean

estimation oracle satisfies ε2/T -CDP.
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CDP SCO upper bound (convex)

Our algorithm is an adaption of full gradient descent.

• Initialize w0 ∈ W.

• Let Gt = MeanOracle({∇ℓ(w t−1, xi )}i∈[n]).
• w t = ProjW(w t−1 − ηt−1Gt)

Theorem (privacy)

Our CDP SCO algorithm satisfies ε2-CDP suppose the mean

estimation oracle satisfies ε2/T -CDP.

Proof: DP post-processing and composition.
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CDP SCO upper bound (convex)

Theorem (utility, informal)

Suppose the mean estimation oracle guarantees that the bias is

smaller than B and the variance is smaller than G 2, the algorithm

outputs wpriv such that

E
[
LD(w

priv )− LD(w
∗)
]
≤ O

(
1√
T

+
G 2

√
T

+ B

)
.

• Setting G = B leads to the optimal performance for one

single round.

• However, it is sub-optimal for CDP SCO.

• Instead we set B = G2
√
T

to balance the second and third terms.

• This is achieved by a much more careful analysis of the mean

estimation oracle.

14



CDP SCO upper bound (convex)

Theorem (utility, informal)

Suppose the mean estimation oracle guarantees that the bias is

smaller than B and the variance is smaller than G 2, the algorithm

outputs wpriv such that

E
[
LD(w

priv )− LD(w
∗)
]
≤ O

(
1√
T

+
G 2

√
T

+ B

)
.

• Setting G = B leads to the optimal performance for one

single round.

• However, it is sub-optimal for CDP SCO.

• Instead we set B = G2
√
T

to balance the second and third terms.

• This is achieved by a much more careful analysis of the mean

estimation oracle.

14



CDP SCO upper bound (convex)

Theorem (utility, informal)

Suppose the mean estimation oracle guarantees that the bias is

smaller than B and the variance is smaller than G 2, the algorithm

outputs wpriv such that

E
[
LD(w

priv )− LD(w
∗)
]
≤ O

(
1√
T

+
G 2

√
T

+ B

)
.

• Setting G = B leads to the optimal performance for one

single round.

• However, it is sub-optimal for CDP SCO.

• Instead we set B = G2
√
T

to balance the second and third terms.

• This is achieved by a much more careful analysis of the mean

estimation oracle.

14



CDP SCO upper bound (convex)

Theorem (utility, informal)

Suppose the mean estimation oracle guarantees that the bias is

smaller than B and the variance is smaller than G 2, the algorithm

outputs wpriv such that

E
[
LD(w

priv )− LD(w
∗)
]
≤ O

(
1√
T

+
G 2

√
T

+ B

)
.

• Setting G = B leads to the optimal performance for one

single round.

• However, it is sub-optimal for CDP SCO.

• Instead we set B = G2
√
T

to balance the second and third terms.

• This is achieved by a much more careful analysis of the mean

estimation oracle.
14



CDP SCO lower bound

For CDP mean estimation,

• Following a similar argument in [Bassily et al., 2014], we

reduce CDP mean estimation to CDP SCO.

• We propose CDP Fano’s inequality, generalizing the results

in [Acharya et al., 2021] and [Bun and Steinke, 2016].
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CDP SCO lower bound

For CDP mean estimation,

• Following a similar argument in [Bassily et al., 2014], we

reduce CDP mean estimation to CDP SCO.

• We propose CDP Fano’s inequality, generalizing the results

in [Acharya et al., 2021] and [Bun and Steinke, 2016].

Theorem (ε2-CDP Fano’s inequality)

Let V = {p1, ..., pM} be a set of distributions, θ be a parameter of

interest, and ℓ be a loss function. Suppose for all i ̸= j , it satisfies

(a) ℓ(θ(pi ), θ(pj)) ≥ r , (b) dTV(pi , pj) ≤ α. Then for any ε2-CDP

estimator θ̂,

1

M

∑
i∈[M]

E
[
ℓ
(
θ̂(X ), θ(pi )

)]
≥ r

2

(
1−

ε2
(
n2α2 + nα(1− α)

)
+ log 2

logM

)
.
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Generalizations



Generalizing to k > 2

Private mean estimation:

• Given n i.i.d. samples from an unknown heavy-tailed

distribution D over Rd , privately estimate the distribution

mean under ℓ2 distance.

• Heavy-tailed assumption: EX∼D
[
|⟨X , ej⟩|k

]
≤ 1,∀j ∈ [d ].

• ε2-CDP result: Θ

(√
d
n +

√
d ·
(√

d
εn

) k−1
k

)
.

• ε-DP result: Θ

(√
d
n +

√
d ·
(
d
εn

) k−1
k

)
.

• A separation between pure DP and approximate DP.
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Private mean estimation (k > 2)

• When k = ∞, each dimension is (roughly) a sub-Gaussian

distribution.

• Our ε-DP result: Θ

(√
d
n + d

3
2

εn

)
.

• Estimating spherical Gaussians:

Θ

(√
d
n + d

εn

)
[Kamath et al., 2019, Acharya et al., 2021].

• The gap comes from the dependency across each dimension.
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CDP SCO (k > 2)

All our analysis can be generalized to k > 2.

Convex setting:

• Õ
(

d√
n
+ d2

εn ·
(

εn
d1.5

) 1
k

)

• Ω

(√
d
n +

√
d ·
(√

d
εn

) k−1
k

)
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Summary

• Tight results for private mean estimation with heavy-tailed

data.

• Improved results for DP SCO. Our result is tight under

strongly-convex setting.

• A new hammer for developing CDP lower bounds.
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