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Linear Programming (LP)

Consider the standard form of the primal LP problem:

T

min ¢’ x, subjectto Ax=b,x>0 (1)

The associated dual problem is

max b'y, subjectto ATy +s=c,s>0 (2)

Here,

A eR™" beR™ and c € R" are inputs
An LP problem with m = 6,n = 2.
x € R", y € R™, and s € R" are variables
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LP: Applications in ML

» Basis pursuit [Tillmann , PAMM 2015]

» Sparse inverse covariance matrix estimation (SICE) [Yuan , JMLR 2010]
» MAP inference [Meshi & Globerson , ECML PKDD 2011]

» (1-regularized SVMs [Zhu, Rosset, Tibshirani, & Hastie , NeurlPS 2004]
» Nonnegative matrix factorization (NMF) [Recht et al. , NeurlPS 2012]

» Markov decision process (MDP) [Bello & Riano , IEEE SIEDS 2006]
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Objective Overview

Goal: Speed up linear programming on large-scale data sets for “big data”
applications, such as found in ML and computational biology
» Focus on using using practical algorithms, i.e.,

— Predictor-corrector methods instead of short step
— lterative linear solvers instead of fast matrix multiplication
— Efficient preconditioner construction instead of inverse maintenance

» Extend classic theoretical convergence guarantees for linear programming to allow
for the use of inexact linear system solves
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Optimality conditions

(x,y,s) is an (primal-dual) optimal solution iff it satisfies the following conditions:*

Ax= b, x>0 (primal feasibility)
Aly+s=1¢,s>0 (dual feasibility)
xos= 0 (complementary slackness)

Assumptions:
- n>m and rank(A) =m

— Solution set is nonempty

Let x o s denote the entry-wise product of x and s, i.e., [x 0s]; = x;s;
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Standard Methods

lterates

Simplex
. . Cantral path Directions with
» Fast in practice step-size

» exp-time worst case
Feasible

( h region
Interior Point Moofl’ﬂl”;:'
» Fastest in theory (1=0)
» Often faster in practice e-approximate *‘;?}e'gh?qhoo‘j
for large-scale LPs Soldtien R

Path-following IPM visualization. Figure from [2].
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Interior point methods

» Duality measure:

T T T T T
x's x'(c—A'y cx—b'y
n n n

» Feasible Predictor-Corrector IPM:

- Let 7 = {(x,y,s): (x,8) >0, Ax=b, ATy +s=c}.
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Interior point methods

» Duality measure:

T T T T T
x's x'(c—A'y cx—b'y
n n n

» Feasible Predictor-Corrector IPM:
- Let 7 = {(x,y,s): (x,8) >0, Ax=b, ATy +s=c}.

— Central path: C = {(x,y,s) € F* : xo0s = ul,}, where x o s denotes the
element-wise product of x and s.
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Interior point methods

» Duality measure:

T T T T T
x's x'(c—A'y cx—b'y
n n n

» Feasible Predictor-Corrector IPM:
- Let 7 = {(x,y,s): (x,8) >0, Ax=b, ATy +s=c}.

— Central path: C = {(x,y,s) € F* : xo0s = ul,}, where x o s denotes the
element-wise product of x and s.

— Neighborhood: N3(6) = {(x,y, s) € FU:||xos — puly,lls < 0u, (x,8) > O}
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Solving linear system

Let X and S be diagonal matrices with entries of x and s on the diagonal respectively.

A 0 0) [Ax 0
0o AT 1,|lAy]| = 0
S 0 X/ \As —XS1, + ouly,
AD?ATAy = —opAS™'1, + Ax, (3)
p
As= —ATAy, (4)
Ax = —x+ouS7'1, — D?As. (5)

Here, D = X!/2871/2 is a diagonal matrix.
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Predictor-Corrector Method

-

. Start in the smaller neighborhood

N>(0.25)

. Take a predictor step

» centering parameter o = 0

» Remains within the larger
N>(0.5) neighborhood

» Makes large progress towards
the optimum

. Take a corrector step

> centering parameter o = 1

» Goes towards the central path

» Returns to the smaller NV5(0.25)
neighborhood

. Repeat until the duality measure p is

less than e

~
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Predictor-corrector visualization.
Figure from [3]



Solving normal equation

AD?ATAy = p (3)

Direct solvers

— If A is high-dimensional and dense, computationally prohibitive.

— Sparse solvers doesn't take into account the irregular sparsity pattern of AD?A..

Iterative solvers

— AD?AT is typically ill-conditioned near the optimal solution.
— Does not return an exact solution (invalidates standard theoretical analysis)
— Does not maintain primal feasibility
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Structural Condition: Inexact system solve

We can maintain O(y/nlog @) outer iteration complexity as long as an inexact solver satisfies
€
at each iteration:?
|Ay — (AD?A”)"'p|lap2ar <4 and |AD?ATAy - p|s <5,
€
withd =0 ——— .
(ﬁ log 10/ 6)

— Running the standard predictor-correct algorithm with such an inexact solver converges in
O(v/nlog @) outer iterations to an e-optimal solution (same as using a direct solver)
€

— The final solution will be e-feasible, i.e., |Ax* — bljs <e.

’The energy-norm is denoted as ||x||m = VX7 Mx for vector x and PSD matrix M.
12/23



Structural Condition: Error-adjusted solver

How do we ensure that the final solution is exactly feasible?
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Perturbation vector v [Monteiro and O’Neal, 2003]

A 0 0\ [Ax 0
0 AT I,| Ay ]| = 0
S 0 X AS —XS1,, +opl, —v

AD?ATAy = p+ AS v, (6)
As= —ATAy, (7)
Ax= —x+opS7'1, —D?As - S 'v. (8)

» AAX =0 if v satisfies eqn. (6) = A(x+aAx)=Db
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Structural Condition: Error-adjusted solver

As long as the returned inexactly solution Ay and correction vector v satisfy:

AD?’ATAy =p+AS™'v and |[v]2 < O(e), 9)

— The modified predictor-corrector algorithm converges in O <\/ﬁlog @) outer iterations
€

— The final solution will be exactly feasible, i.e., Ax* = b.
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Iterative Solver

How can we efficiently solve the linear systems while
fulfilling the previous structural conditions?
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Iterative solver

Preconditioned Gradient Algorithm (PCG):3 )
Input: AD € R™ " with m < n, p € R™, sketch- » Sketching matrix W is an £5-subspace
ing matrix W € R"*" iteration count t; embedding matrix

Step 1. Compute ADW and its SVD. Let Uq € » Used to c?antruct a strong precondi-
R™*™ be the matrix of its left singular vectors and tioner Q" ™~ to reduce the condition
let 232 € R™*™ be the matrix of its singular val- number of the system to a constant

ues; » lterative solvers, e.g. PCG, con-

_ —_1/2 verge exponentially quickly via stan-
Step 2. Compute Q /2 = UqXg/*Ug; dard analysis:

Step 3. Initialize z° « 0,,, and run standard CG on _ —1/2~ _
Q7P/2AD2ATQ*1/2Z :mel/Qp for t iterations: HQ 1/2(AD2AT)Q 1/2Zt -Q 1/2p||2
Output: return Ay = Q~'/2% < ¢'1Q'2pllz, for some ¢ € (0, 1).

*First proposed in [1].
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Inexact system solver for unmodified PC

Recall that the normal equations must be solved to the following precision with

€
0= —_|:
© (ﬁlogﬂo/€>
|Ay — (AD*AT)"'p[lap2ar <0 and |[AD?ATAy —p|; < 4.

max (AD
— The previous PCG method will satisfy both conditions after O <log M)

iterations.

— The omax(AD) factor is needed to satisfy the £5-norm guarantee on the residual
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Inexact system solver for error-adjusted PC

Recall that the inexact solution to the normal equations, Ay, and correction vector, v, must
satisfy:

AD?’ATAy =p+AS~'v and |[v]2 < O(e).

— It suffice to run for the PCG method for O <log %) iterations
€

— Notice the lack of the o, (AD) factor.

Correction vector

v = (XS)”*"W(ADW)"(AD?ATAy — p).

— Computable with a constant number of mat-vecs with already computed matrices.
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Inexact solve time complexity

For the PCG solver instantiation...

» The preconditioner Q_1/2 can be computed efficiently if W is the count sketch matrix
- Q_I/2 can be computed in O <m3 log T) time with probability at least 1 — n
U]

» Each iteration of CG computes a constant number of matrix products with Q~/2, AD,
and DAT.

— Each mat-vec takes O(nnz(A) +m?) time

» Total number of iterations is logarithmic in n

max (AD o
-0 <log M) or O (log %) iterations
€ €

> Inexact system solves take O (m® + nnz(A)) time (ignoring log factors)
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Motivation: Predictor-corrector is a theoretically and empirically fast method for linear
programming, but previous theory using direct/exact solvers does not scale.

Structural conditions
— We provide conditions on inexactly computing the PC steps so that the outer iteration

complex remains O (ﬁlog @) and the returned solution is e-feasible
€

— We provide conditions on inexactly computing the PC step and a correction vector so
that slightly modifying the PC algo. returns an exactly feasible solution while outer

iteration complexity remains O (\/ﬁlog @>.
€
Efficient iterative solvers
— Construct a strong preconditioner using sketching

— Each iteration of the predictor-corrector method then takes 9] (m3 + nnz(A)) time.
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Thank you!

Questions?
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