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Linear Programming (LP)

Consider the standard form of the primal LP problem:

min cTx , subject to Ax = b , x ≥ 0 (1)

The associated dual problem is

max bTy , subject to ATy + s = c , s ≥ 0 (2)

Here,
A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are inputs

x ∈ Rn, y ∈ Rm, and s ∈ Rn are variables
An LP problem with m = 6, n = 2.
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LP: Applications in ML

▶ Basis pursuit [Tillmann , PAMM 2015]

▶ Sparse inverse covariance matrix estimation (SICE) [Yuan , JMLR 2010]

▶ MAP inference [Meshi & Globerson , ECML PKDD 2011]

▶ ℓ1-regularized SVMs [Zhu, Rosset, Tibshirani, & Hastie , NeurIPS 2004]

▶ Nonnegative matrix factorization (NMF) [Recht et al. , NeurIPS 2012]

▶ Markov decision process (MDP) [Bello & Riano , IEEE SIEDS 2006]
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Objective Overview

Goal: Speed up linear programming on large-scale data sets for “big data”
applications, such as found in ML and computational biology

▶ Focus on using using practical algorithms, i.e.,
– Predictor-corrector methods instead of short step
– Iterative linear solvers instead of fast matrix multiplication
– Efficient preconditioner construction instead of inverse maintenance

▶ Extend classic theoretical convergence guarantees for linear programming to allow
for the use of inexact linear system solves
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Optimality conditions

(x, y, s) is an (primal-dual) optimal solution iff it satisfies the following conditions:1

Ax = b, x ≥ 0 (primal feasibility)

ATy + s = c, s ≥ 0 (dual feasibility)

x ◦ s = 0 (complementary slackness)

Assumptions:

– n≫ m and rank(A) = m

– Solution set is nonempty

1Let x ◦ s denote the entry-wise product of x and s, i.e., [x ◦ s]i = xisi
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Standard Methods

Simplex
▶ Fast in practice
▶ exp-time worst case

Interior Point
▶ Fastest in theory
▶ Often faster in practice

for large-scale LPs

Path-following IPM visualization. Figure from [2].
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Interior point methods

▶ Duality measure:

µ = xTs
n

= xT(c−ATy)
n

= cTx− bTy
n

↓ 0

▶ Feasible Predictor-Corrector IPM:

– Let F0 = {(x, y, s) : (x, s) > 0, Ax = b, ATy + s = c}.

– Central path: C = {(x, y, s) ∈ F0 : x ◦ s = µ1n}, where x ◦ s denotes the
element-wise product of x and s.

– Neighborhood: N2(θ) =
{

(x, y, s) ∈ F0 : ∥x ◦ s− µ1n∥2 ≤ θµ, (x, s) > 0
}
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Solving linear system
Let X and S be diagonal matrices with entries of x and s on the diagonal respectively.A 0 0

0 AT In

S 0 X


∆x

∆y
∆s

 =

 0
0

−XS1n + σµ1n



AD2AT∆y = −σµAS−11n + Ax︸ ︷︷ ︸
p

, (3)

∆s = −AT∆y , (4)
∆x = − x + σµS−11n −D2∆s. (5)

Here, D = X1/2S−1/2 is a diagonal matrix.
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Predictor-Corrector Method

1. Start in the smaller neighborhood
N2(0.25)

2. Take a predictor step
▶ centering parameter σ = 0
▶ Remains within the larger
N2(0.5) neighborhood

▶ Makes large progress towards
the optimum

3. Take a corrector step
▶ centering parameter σ = 1
▶ Goes towards the central path
▶ Returns to the smaller N2(0.25)

neighborhood
4. Repeat until the duality measure µ is

less than ϵ

Predictor-corrector visualization.
Figure from [3]

.
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Solving normal equation

AD2AT∆y = p (3)

Direct solvers

– If A is high-dimensional and dense, computationally prohibitive.

– Sparse solvers doesn’t take into account the irregular sparsity pattern of AD2A.

Iterative solvers

– AD2AT is typically ill-conditioned near the optimal solution.
– Does not return an exact solution (invalidates standard theoretical analysis)
– Does not maintain primal feasibility
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Structural Condition: Inexact system solve

We can maintain O(
√

n log µ0

ϵ
) outer iteration complexity as long as an inexact solver satisfies

at each iteration:2

∥∆ỹ− (AD2AT )−1p∥AD2AT ≤ δ and ∥AD2AT ∆ỹ− p∥2 ≤ δ,

with δ = O
(

ϵ√
n log µo/ϵ

)
.

– Running the standard predictor-correct algorithm with such an inexact solver converges in
O(
√

n log µ0

ϵ
) outer iterations to an ϵ-optimal solution (same as using a direct solver)

– The final solution will be ϵ-feasible, i.e., ∥Ax∗ − b∥2 ≤ ϵ.

2The energy-norm is denoted as ∥x∥M =
√

xT Mx for vector x and PSD matrix M.
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Structural Condition: Error-adjusted solver

How do we ensure that the final solution is exactly feasible?
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Perturbation vector v [Monteiro and O’Neal, 2003]

A 0 0
0 AT In

S 0 X

 ∆x̃
∆ỹ
∆s̃

 =

 0
0

−XS1n + σµ1n − v



AD2AT∆ỹ = p + AS−1v , (6)
∆s̃ = −AT∆ỹ , (7)
∆x̃ = − x + σµS−11n −D2∆s̃− S−1v. (8)

▶ A∆x̃ = 0 if v satisfies eqn. (6) ⇒ A(x + α∆x̃) = b
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Structural Condition: Error-adjusted solver

As long as the returned inexactly solution ∆ỹ and correction vector v satisfy:

AD2AT ∆ỹ = p + AS−1v and ∥v∥2 < O(ϵ), (9)

– The modified predictor-corrector algorithm converges in O
(√

n log µ0

ϵ

)
outer iterations

– The final solution will be exactly feasible, i.e., Ax∗ = b.
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Iterative Solver

How can we efficiently solve the linear systems while
fulfilling the previous structural conditions?
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Iterative solver

Preconditioned Gradient Algorithm (PCG):3
Input: AD ∈ Rm×n with m≪ n, p ∈ Rm, sketch-
ing matrix W ∈ Rn×w, iteration count t;

Step 1. Compute ADW and its SVD. Let UQ ∈
Rm×m be the matrix of its left singular vectors and
let Σ

1/2
Q ∈ Rm×m be the matrix of its singular val-

ues;

Step 2. Compute Q−1/2 = UQΣ
−1/2
Q U⊤

Q;

Step 3. Initialize z̃0 ← 0m and run standard CG on
Q−1/2AD2AT Q−1/2z̃ = Q−1/2p for t iterations;

Output: return ∆̂y = Q−1/2z̃t

▶ Sketching matrix W is an ℓ2-subspace
embedding matrix

▶ Used to construct a strong precondi-
tioner Q−1,2 to reduce the condition
number of the system to a constant

▶ Iterative solvers, e.g. PCG, con-
verge exponentially quickly via stan-
dard analysis:

∥Q−1/2(AD2AT )Q−1/2z̃t −Q−1/2p∥2

≤ ζt∥Q−1/2p∥2, for some ζ ∈ (0, 1).

3First proposed in [1].
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Inexact system solver for unmodified PC

Recall that the normal equations must be solved to the following precision with

δ = O
(

ϵ√
n log µo/ϵ

)
:

∥∆ỹ− (AD2AT )−1p∥AD2AT ≤ δ and ∥AD2AT ∆ỹ− p∥2 ≤ δ.

– The previous PCG method will satisfy both conditions after O
(

log σmax(AD) nµ

ϵ

)
iterations.

– The σmax(AD) factor is needed to satisfy the ℓ2-norm guarantee on the residual
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Inexact system solver for error-adjusted PC

Recall that the inexact solution to the normal equations, ∆ỹ, and correction vector, v, must
satisfy:

AD2AT ∆ỹ = p + AS−1v and ∥v∥2 < O(ϵ).

– It suffice to run for the PCG method for O
(

log nµ

ϵ

)
iterations

– Notice the lack of the σmax(AD) factor.

Correction vector

v = (XS)1/2W(ADW)†(AD2AT∆̂y− p).

– Computable with a constant number of mat-vecs with already computed matrices.
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Inexact solve time complexity

For the PCG solver instantiation...
▶ The preconditioner Q−1/2 can be computed efficiently if W is the count sketch matrix

– Q−1/2 can be computed in O
(

m3 log m

η

)
time with probability at least 1− η

▶ Each iteration of CG computes a constant number of matrix products with Q−1/2, AD,
and DAT .

– Each mat-vec takes O(nnz(A) + m3) time
▶ Total number of iterations is logarithmic in n

– O
(

log σmax(AD) nµ

ϵ

)
or O

(
log nµ

ϵ

)
iterations

▶ Inexact system solves take Õ
(
m3 + nnz(A)

)
time (ignoring log factors)
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Recap

Motivation: Predictor-corrector is a theoretically and empirically fast method for linear
programming, but previous theory using direct/exact solvers does not scale.

Structural conditions

– We provide conditions on inexactly computing the PC steps so that the outer iteration
complex remains O

(√
n log µ0

ϵ

)
and the returned solution is ϵ-feasible

– We provide conditions on inexactly computing the PC step and a correction vector so
that slightly modifying the PC algo. returns an exactly feasible solution while outer
iteration complexity remains O

(√
n log µ0

ϵ

)
.

Efficient iterative solvers

– Construct a strong preconditioner using sketching

– Each iteration of the predictor-corrector method then takes Õ
(
m3 + nnz(A)

)
time.
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Thank you!

Questions?

22/23



References

Agniva Chowdhury, Palma London, Haim Avron, and Petros Drineas. Faster randomized
infeasible interior point methods for tall/wide linear programs. Advances in Neural Information
Processing Systems, 33:8704–8715, 2020.

Goran Lesaja. Introducing interior-point methods for introductory operations research courses
and/or linear programming courses. Open Operational Research Journal, 3:1, 2009.

Stephen J Wright. Primal-dual interior-point methods. SIAM, 1997.

23/23


