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Examples in Causal Inference
EXAMPLE 1: Average Treatment Effect of binary treatment

• Suppose that we want to estimate the causal impact of a
treatment 𝑇 ∈ {0, 1} on an outcome 𝑌

• In observational settings, this type of inference is complicated
by the presence of confounders that affect both 𝑇 and 𝑌

• However, if we have access to a rich enough set of covariates
𝑋 such that the treatment is as good as randomly assigned
conditional on those covariates, we might still be able to
identify an ATE:

𝜃0 ∶= E [E [𝑌 ∣ 𝑇 = 1, 𝑋] − E [𝑌 ∣ 𝑇 = 0, 𝑋]]

𝑇

𝑋

𝑌
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Examples in Causal Inference
EXAMPLE 2: Average Derivative of continuous treatment

• When 𝑇 is continuous, we may be interested in estimating an
average derivative or average marginal effect

𝜃0 ∶= E [𝜕𝑇E [𝑌 ∣ 𝑇, 𝑋]] 𝑇

𝑋

𝑌
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General Setting

• We want to provide a point estimate and a confidence interval for:
𝜃0 ∶= E [𝑚(𝑊; 𝛾0)]

where 𝑊 ∶= (𝑌, 𝑍), 𝑍 ∶= (𝑇, 𝑋) and 𝛾0(𝑍) ∶= E [𝑌 ∣ 𝑍] is an (unknown) regression
function
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General Setting

• We want to provide a point estimate and a confidence interval for:
𝜃0 ∶= E [𝑚(𝑊; 𝛾0)]

where 𝑊 ∶= (𝑌, 𝑍), 𝑍 ∶= (𝑇, 𝑋) and 𝛾0(𝑍) ∶= E [𝑌 ∣ 𝑍] is an (unknown) regression
function

• We want to use a ML estimator 𝛾̂, but because of regularization and/or model
selection, the direct estimator:

̂𝜃direct ∶= 𝔼𝑛 [𝑚(𝑊; 𝛾̂)]

may have a bias that vanishes at a √𝑛 rate or slower, and may not even be
asymptotically normal

• This invalidates usual CIs based on asymptotic normality
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Debiased Machine Learning

• We want to construct a debiased ML estimator:
̂𝜃DML ∶= 𝔼𝑛[𝑚(𝑊; 𝛾̂) + ̂𝛼(𝑍)(𝑌 − 𝛾̂(𝑍))⏟⏟⏟⏟⏟⏟⏟⏟⏟

debiasing term
]
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]

• But what should this ̂𝛼 be?

• The population value of this function should perform a debiasing role, i.e.
E [𝑚(𝑊; 𝛾) − 𝛼0(𝑍)𝛾(𝑍)] = 0 for all 𝛾
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Lemma (Riesz Representation Theorem)
If 𝛾 ↦ E [𝑚(𝑊; 𝛾)] is a continuous linear functional, then there exists 𝛼0 (Riesz
representer, RR) such that

E [𝑚(𝑊; 𝛾)] = E [𝛼0(𝑍)𝛾(𝑍)]

for all 𝛾 with E [𝛾(𝑍)2] < ∞.
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• The RR exists in Examples 1 and 2 under mild regularity conditions:
EXAMPLE 1: 𝛼0 is the Horvitz-Thompson transformation:

𝛼0(𝑇, 𝑋) = 𝑇/ Pr(𝑇 = 1 ∣ 𝑋) − (1 − 𝑇)/(1 − Pr(𝑇 = 1 ∣ 𝑋))

EXAMPLE 2: 𝛼0 is a generalized propensity score:
𝛼0(𝑇, 𝑋) = −𝜕𝑡 log 𝑓 (𝑇 ∣ 𝑋)
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• We want to construct a debiased ML estimator:
̂𝜃DML ∶= 𝔼𝑛[𝑚(𝑊; 𝛾̂) + ̂𝛼(𝑍)(𝑌 − 𝛾̂(𝑍))⏟⏟⏟⏟⏟⏟⏟⏟⏟

debiasing term
]

• The augmented moment satisfies a mixed bias property:
E [𝑚(𝑊; 𝛾) + 𝛼(𝑍)(𝑌 − 𝛾(𝑍))] = 𝜃0 − E [(𝛼(𝑍) − 𝛼0(𝑍))(𝛾(𝑍) − 𝛾0(𝑍))]

• If √𝑛‖ ̂𝛼 − 𝛼0‖𝐿2‖𝛾̂ − 𝛾0‖𝐿2 → 0, then asymptotic normality is restored:

√𝑛( ̂𝜃DML − 𝜃0) ⇒ 𝑁(0, 𝑉)

where 𝑉 = Var {𝑚(𝑊; 𝛾0) + 𝛼0(𝑍)(𝑌 − 𝛾0(𝑍))}
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Making it Automatic

• The first generation of debiased ML estimators used the explicit form of the RR
EXAMPLE 1: Estimate the propensity score Pr(𝑇 = 1 ∣ 𝑋) and plug it in the RR formula
(AIPW estimator)
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Making it Automatic

• Here, instead, we use the fact that:
𝛼0 = arg min

𝛼
E [𝛼(𝑍)2 − 2𝑚(𝑊; 𝛼)]

= arg min
𝛼

E [𝛼(𝑍)2 − 2𝛼0(𝑍)𝛼(𝑍) + 𝛼0(𝑍)2]

= arg min
𝛼

E [(𝛼(𝑍) − 𝛼0(𝑍))2]

to estimate the RR by the empirical analogue:
̂𝛼 = arg min

𝛼∈𝒜𝑛

𝔼𝑛 [𝛼(𝑍)2 − 2𝑚(𝑊; 𝛼)] (∗)

• Automatic approach in that it relies only on black-box evaluation oracle access to
the linear functional and does not require knowledge of the analytic form of 𝛼0
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RieszNet: Targeted Regularization and Multitasking
Architecture

Lemma
To estimate E [𝑚(𝑊; 𝛾0)] it suffices to consider regression functions that condition only
on the value of the RR, i.e. 𝛾0(𝑍) = ℎ0(𝛼0(𝑍))
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RieszNet: Targeted Regularization and Multitasking
Architecture

Lemma
To estimate E [𝑚(𝑊; 𝛾0)] it suffices to consider regression functions that condition only
on the value of the RR, i.e. 𝛾0(𝑍) = ℎ0(𝛼0(𝑍))

• Based on this Lemma, we consider a deep neural representation of the RR and the
regression as follows:

𝑍 …

…

𝛼(𝑍 ; 𝑤1∶𝑘, 𝛽) = ⟨𝑓1(𝑍 ; 𝑤1∶𝑘), 𝛽⟩

𝛾(𝑍 ; 𝑤1∶𝑑) = 𝑓2( 𝑓1(𝑍 ; 𝑤1∶𝑘) ; 𝑤(𝑘+1)∶𝑑)

𝑓1(⋅ ; 𝑤1∶𝑘)
𝑓2(⋅ ; 𝑤(𝑘+1)∶𝑑)

5/14



RieszNet: Targeted Regularization and Multitasking
Targeted Regularization

• Inspired by the TMLE framework (Bang & Robins, 2005; Van der Laan et al., 2021), we
consider a corrected regression:

𝛾̃(𝑍) = 𝛾(𝑍) + 𝜖 ⋅ 𝛼(𝑍),

where 𝜖 is the OLS coefficient of 𝑌 − 𝛾(𝑍) on 𝛼(𝑍)

• The parameter 𝜖 is optimized together with the rest of the network (as in dragonnet,
Shi et al., 2019), rather than in a post-processing step
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RieszNet: Targeted Regularization and Multitasking
Multitasking

• Our multitasking architecture minimizes the combined loss:
min

𝑤1∶𝑑,𝛽,𝜖
REGloss(𝑤1∶𝑑) + 𝜆1RRloss(𝑤1∶𝑘, 𝛽) + 𝜆2TMLEloss(𝑤1∶𝑑, 𝛽, 𝜖) + 𝑅(𝑤1∶𝑑, 𝛽)

where:
REGloss(𝑤1∶𝑑) ∶= 𝔼𝑛 [(𝑌 − 𝛾(𝑍; 𝑤1∶𝑑))2]
RRloss(𝑤1∶𝑘, 𝛽) ∶= 𝔼𝑛 [𝛼(𝑍; 𝑤1∶𝑘, 𝛽)2 − 2 𝑚(𝑊; 𝛼(⋅; 𝑤1∶𝑘, 𝛽))]

TMLEloss(𝑤1∶𝑑, 𝛽, 𝜖) ∶= 𝔼𝑛 [(𝑌 − 𝛾(𝑍; 𝑤1∶𝑑) − 𝜖 ⋅ 𝛼(𝑍; 𝑤1∶𝑘, 𝛽))2]

and 𝑅(𝑤1∶𝑑, 𝛽) is a penalty that does not take 𝜖 as input

• We train the weights by minimizing this loss with stochastic first-order methods
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ForestRiesz: Locally Linear Riesz Estimation
Sieve Parametrization

• One approach to estimating 𝛼0 by regression trees would be to allow splits with
respect to all input variables 𝑍 = (𝑇, 𝑋)

• However, this approach could introduce large discontinuities in 𝑇, under which our
asymptotic theory is not valid
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ForestRiesz: Locally Linear Riesz Estimation
Sieve Parametrization

• One approach to estimating 𝛼0 by regression trees would be to allow splits with
respect to all input variables 𝑍 = (𝑇, 𝑋)

• However, this approach could introduce large discontinuities in 𝑇, under which our
asymptotic theory is not valid

• Instead, we parametrize 𝛼(𝑍) as a locally linear function:
𝛼(𝑍) = ⟨𝜙𝛼(𝑇, 𝑋), 𝛽𝛼(𝑋)⟩ ,

where 𝜙𝛼(𝑇, 𝑋) is a (smooth) pre-defined feature map and 𝛽𝛼(𝑋) is a
non-parametric component estimated based on the tree splits
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ForestRiesz: Locally Linear Riesz Estimation
Estimation by GRF

• The non-parametric component 𝛽𝛼 minimizes the RR loss:
min
𝛽𝛼

E [𝛽𝛼(𝑥)⊤𝜙𝛼(𝑍)𝜙𝛼(𝑍)⊤𝛽𝛼(𝑥) − 2 𝛽𝛼(𝑥)⊤𝑚(𝑊; 𝜙𝛼) ∣ 𝑋 = 𝑥]

which admits the following local first order condition:
E [𝜙𝛼(𝑍)𝜙𝛼(𝑍)⊤𝛽𝛼(𝑥) − 𝑚(𝑊; 𝜙𝛼) ∣ 𝑋 = 𝑥] = 0
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ForestRiesz: Locally Linear Riesz Estimation
Estimation by GRF

• The non-parametric component 𝛽𝛼 minimizes the RR loss:
min
𝛽𝛼

E [𝛽𝛼(𝑥)⊤𝜙𝛼(𝑍)𝜙𝛼(𝑍)⊤𝛽𝛼(𝑥) − 2 𝛽𝛼(𝑥)⊤𝑚(𝑊; 𝜙𝛼) ∣ 𝑋 = 𝑥]

which admits the following local first order condition:
E [𝜙𝛼(𝑍)𝜙𝛼(𝑍)⊤𝛽𝛼(𝑥) − 𝑚(𝑊; 𝜙𝛼) ∣ 𝑋 = 𝑥] = 0

• This falls into the class of problems defined by solutions to moment conditions
considered in the Generalized Random Forests framework of Athey et al. (2019)

• We modify the original GRF heterogeneity criterion to maximize a version weighted by
the local Jacobians 𝐽(child) = |child|−1 ∑𝑖∈child 𝜙𝛼(𝑍𝑖)𝜙𝛼(𝑍𝑖)⊤
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ForestRiesz: Locally Linear Riesz Estimation
Regression

• We can do exactly the same for the regression function

• In fact, we can even build a multitasking version of ForestRiesz where we stack the
moment conditions for the RR and the regression
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Results: Average Treatment Effect in
the IHDP Dataset

• IHDP was an experiment designed to evaluate the effect of home visits and
attendance at specialized clinics 𝑇 on future developmental outcomes 𝑌 of low
birth weight infants

• 𝑛 = 747, dim(𝑋) = 25 continuous and binary covariates

• Taking 𝑋 from the data, generate 𝑇 and 1000 synthetic draws of 𝑌 with the NPCI R
package, same setting as Shi et al. (2019) for comparability
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Results: Average Treatment Effect in
the IHDP Dataset

Table: Mean Absolute Error (MAE) and its standard error over 1000 semi-synthetic datasets based
on the IHDP experiment

(a) RieszNet

MAE ± std. err.

RieszNet 0.110 ± 0.003

Benchmark:
Dragonnet 0.146 ± 0.010(Shi et al., 2019)

(b) ForestRiesz

MAE ± std. err.

ForestRiesz 0.126 ± 0.004

Benchmark:
CausalForest 0.728 ± 0.028(Athey et al., 2019)
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Results: Average Derivative in the BHP
Gasoline Demand Data

• Gasoline demand data from 2001 National Household Travel Survey (Blundell et al.,
2017). Want to estimate average derivative of 𝑌 = log(quantity) with respect to
𝑇 = log(price)

• 𝑛 = 3466, dim(𝑋) = 50 continuous and binary covariates, including household
characteristics and geographic controls

• Take 𝑋 and estimate 𝜇𝑇(𝑋) ∶= E [𝑇 ∣ 𝑋], 𝜎2
𝑇(𝑋) ∶= Var(𝑇 ∣ 𝑋) from the data

• Draw 𝑇 ∼ 𝑁(𝜇𝑇(𝑋), 𝜎2
𝑇(𝑋)) and generate 𝑌 = 𝑓 (𝑇, 𝑋) + 𝜀. Here we show the most

complex 𝑓 (⋅) with linear and non-linear confounding
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Results: Average Derivative in the BHP
Gasoline Demand Data

Figure: RieszNet and ForestRiesz: bias, RMSE, coverage and distribution of estimates over 1000
semi-synthetic datasets based on the BHP gasoline demand data
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(b) ForestRiesz + post-TMLE
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Ablation Studies

• We conduct ablation studies to demonstrate which features of our estimators are
behind the performance gains

• For RieszNet, multitasking and end-to-end learning of the shared representation
are crucial

• For ForestRiesz, cross-fitting is important, multitasking helps
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Summing Up

• Provide the first Auto-DML implementation using Neural Nets (RieszNet) and
Random Forests (ForestRiesz)

• Theory guarantees for generic Auto-DML in Chernozhukov et al. (2021)

• Experimentally evaluate the proposed methods in two settings (ATE and average
derivative)

• Find superior performance to benchmarks
• Ablation studies to demonstrate which features of our estimators are crucial for the
gains
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Thank you!

Want to learn more?
• Come to the poster session at 6:30pm, Hall E #626
or drop me a line at vquintas@mit.edu



Ablation Studies: RieszNet
Effect of Multitasking and End-to-End Learning

• Row 2 uses no multitasking, the Riesz representer and regression function are
estimated using separate NNs

Table: IHDP ablation studies for RieszNet

RieszNet
Bias RMSE Cov.

Baseline -0.044 0.147 0.950
Separate NNs -0.176 0.411 0.880
No end-to-end -0.051 1.221 0.650
TMLE post-proc. -0.088 0.182 0.950
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Ablation Studies: RieszNet
Effect of Multitasking and End-to-End Learning

• Row 3 removes “end-to-end” training of the shared representation: the weights of
the common layers are trained on the Riesz loss only, then frozen when optimizing
the regression loss

Table: IHDP ablation studies for RieszNet

RieszNet
Bias RMSE Cov.

Baseline -0.044 0.147 0.950
Separate NNs -0.176 0.411 0.880
No end-to-end -0.051 1.221 0.650
TMLE post-proc. -0.088 0.182 0.950
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Ablation Studies: RieszNet
Effect of Multitasking and End-to-End Learning

• Row 4 removes “end-to-end” learning of the TMLE adjustment: we set 𝜆2 = 0 and
then adjust the outputs of RieszNet in a standard TMLE post-processing step

Table: IHDP ablation studies for RieszNet

RieszNet
Bias RMSE Cov.

Baseline -0.044 0.147 0.950
Separate NNs -0.176 0.411 0.880
No end-to-end -0.051 1.221 0.650
TMLE post-proc. -0.088 0.182 0.950
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Ablation Studies: ForestRiesz
Effect of Multitasking and Cross-fitting

• Cross-fitting: split the sample in folds ℓ = 1, … 5. For each ℓ, use the data not in ℓ to
obtain 𝛾̂−ℓ and ̂𝛼−ℓ, and then use the data in ℓ to estimate the average moment

• Double cross-fitting: the same, but 𝛾̂−ℓ and ̂𝛼−ℓ are estimated using different
sub-samples

Table: BHP ablation studies for ForestRiesz

ForestRiesz + post-TMLE
Bias RMSE Cov.

Baseline (x-fit, m-task) -0.082 0.327 0.953
No x-fit, no m-task -0.079 0.314 0.827

No x-fit, m-task -0.060 0.326 0.835
X-fit, no m-task -0.091 0.331 0.945

Double x-fit -0.094 0.338 0.950
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