RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests

Víctor Quintas-Martínez (MIT)

ICML 2022

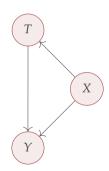
Joint with Victor Chernozhukov (MIT), Whitney Newey (MIT) and Vasilis Syrgkanis (MS Research)

Examples in Causal Inference

EXAMPLE 1: Average Treatment Effect of binary treatment

- Suppose that we want to estimate the causal impact of a treatment $T \in \{0, 1\}$ on an outcome Y
- In observational settings, this type of inference is complicated by the presence of confounders that affect both T and Y
- However, if we have access to a rich enough set of covariates X such that the treatment is as good as randomly assigned conditional on those covariates, we might still be able to identify an ATE:

$$\theta_0 := \mathrm{E}\left[\mathrm{E}\left[Y \mid T = 1, X\right] - \mathrm{E}\left[Y \mid T = 0, X\right]\right]$$

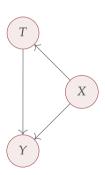


Examples in Causal Inference

EXAMPLE 2: Average Derivative of continuous treatment

 \bullet When T is continuous, we may be interested in estimating an average derivative or average marginal effect

$$\theta_0 := \mathrm{E} \left[\partial_T \mathrm{E} \left[Y \mid T, X \right] \right]$$



General Setting

• We want to provide a point estimate and a confidence interval for:

$$\theta_0 := \mathrm{E}\left[m(W;\gamma_0)\right]$$

where W:=(Y,Z), Z:=(T,X) and $\gamma_0(Z):=\mathrm{E}\left[Y\mid Z\right]$ is an (unknown) regression function

General Setting

• We want to provide a point estimate and a confidence interval for:

$$\theta_0 := \mathbf{E}\left[m(W; \gamma_0)\right]$$

where W := (Y, Z), Z := (T, X) and $\gamma_0(Z) := \mathbb{E}[Y \mid Z]$ is an (unknown) regression function

• We want to use a ML estimator $\widehat{\gamma}$, but because of regularization and/or model selection, the direct estimator:

$$\hat{\theta}_{\mathrm{direct}} := \mathbb{E}_n \left[m(W; \widehat{\gamma}) \right]$$

may have a bias that vanishes at a \sqrt{n} rate or slower, and may not even be asymptotically normal

• This invalidates usual CIs based on asymptotic normality

• We want to construct a debiased ML estimator:

$$\widehat{\theta}_{\mathrm{DML}} := \mathbb{E}\big[m(W; \widehat{\gamma}) + \underbrace{\widehat{\alpha}(Z)\big(Y - \widehat{\gamma}(Z)\big)}_{\text{debiasing term}}\big]$$

• But what should this $\hat{\alpha}$ be?

• We want to construct a debiased ML estimator:

$$\widehat{\theta}_{\mathrm{DML}} := \mathbb{E}\big[m(W; \widehat{\gamma}) + \underbrace{\widehat{\alpha}(Z)\big(Y - \widehat{\gamma}(Z)\big)}_{\text{debiasing term}}\big]$$

• But what should this $\hat{\alpha}$ be?

Lemma (Riesz Representation Theorem)

If $\gamma \mapsto \mathbb{E}\left[m(W;\gamma)\right]$ is a continuous linear functional, then there exists α_0 (Riesz representer, RR) such that

$$\mathrm{E}\left[m(W;\gamma)\right] = \mathrm{E}\left[\alpha_0(Z)\gamma(Z)\right]$$

for all γ with $\mathbb{E}\left[\gamma(Z)^2\right] < \infty$.

• We want to construct a debiased ML estimator:

$$\widehat{\theta}_{\mathrm{DML}} := \mathbb{E}\big[m(W; \widehat{\gamma}) + \underbrace{\widehat{\alpha}(Z)\big(Y - \widehat{\gamma}(Z)\big)}_{\text{debiasing term}}\big]$$

- But what should this $\hat{\alpha}$ be?
- The RR exists in Examples 1 and 2 under mild regularity conditions:

EXAMPLE 1: α_0 is the Horvitz-Thompson transformation:

$$\alpha_0(T,X) = T/\Pr(T=1 \mid X) - (1-T)/(1-\Pr(T=1 \mid X))$$

EXAMPLE 2: α_0 is a generalized propensity score:

$$\alpha_0(T,X) = -\partial_t \log f(T\mid X)$$

• We want to construct a debiased ML estimator:

$$\widehat{\theta}_{\mathrm{DML}} := \mathbb{E}\big[m(W; \widehat{\gamma}) + \underbrace{\widehat{\alpha}(Z)\big(Y - \widehat{\gamma}(Z)\big)}_{\text{debiasing term}}\big]$$

- But what should this $\hat{\alpha}$ be?
- The augmented moment satisfies a mixed bias property:

$$\mathrm{E}\left[m(W;\gamma) + \alpha(Z)(Y - \gamma(Z))\right] = \theta_0 - \mathrm{E}\left[(\alpha(Z) - \alpha_0(Z))(\gamma(Z) - \gamma_0(Z))\right]$$

• If $\sqrt{n}\|\hat{\alpha} - \alpha_0\|_{L^2}\|\widehat{\gamma} - \gamma_0\|_{L^2} \to 0$, then asymptotic normality is restored

$$\sqrt{n}(\hat{\theta}_{\mathrm{DML}}-\theta_0)\Rightarrow N(0,V)$$
 where $V=\mathrm{Var}\left\{m(W;\gamma_0)+\alpha_0(Z)(Y-\gamma_0(Z))\right\}$

Riesz Representer as the Minimizer of a Stochastic Loss

• The first generation of debiased ML estimators used the explicit form of the RR EXAMPLE 1: Estimate the propensity score $\Pr(T=1\mid X)$ and plug it in the RR formula (AIPW estimator)

Riesz Representer as the Minimizer of a Stochastic Loss

Here, instead, we use the fact that:

$$\begin{split} \alpha_0 &= \operatorname*{arg\,min}_{\alpha} \operatorname{E} \left[\alpha(Z)^2 - 2m(W;\alpha) \right] \\ &= \operatorname*{arg\,min}_{\alpha} \operatorname{E} \left[\alpha(Z)^2 - 2\alpha_0(Z)\alpha(Z) + \alpha_0(Z)^2 \right] \\ &= \operatorname*{arg\,min}_{\alpha} \operatorname{E} \left[\left(\alpha(Z) - \alpha_0(Z) \right)^2 \right] \end{split}$$

to estimate the RR by the empirical analogue:

$$\hat{\alpha} = \underset{\alpha \in A_n}{\arg \min} \, \mathbb{E}_n \left[\alpha(Z)^2 - 2m(W; \alpha) \right] \tag{*}$$

• Automatic approach in that it relies only on black-box evaluation oracle access to the linear functional and does not require knowledge of the analytic form of α_0

Architecture

Lemma

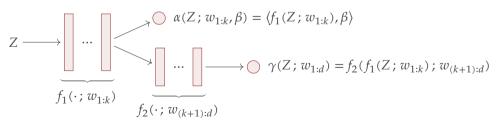
To estimate $\mathbb{E}\left[m(W;\gamma_0)\right]$ it suffices to consider regression functions that condition only on the value of the RR, i.e. $\gamma_0(Z)=h_0(\alpha_0(Z))$

Architecture

Lemma

To estimate $\mathbb{E}\left[m(W;\gamma_0)\right]$ it suffices to consider regression functions that condition only on the value of the RR, i.e. $\gamma_0(Z)=h_0(\alpha_0(Z))$

 Based on this Lemma, we consider a deep neural representation of the RR and the regression as follows:



Targeted Regularization

 Inspired by the TMLE framework (Bang & Robins, 2005; Van der Laan et al., 2021), we consider a corrected regression:

$$\tilde{\gamma}(Z) = \gamma(Z) + \epsilon \cdot \alpha(Z),$$

where ϵ is the OLS coefficient of $Y - \gamma(Z)$ on $\alpha(Z)$

• The parameter ϵ is optimized together with the rest of the network (as in dragonnet, Shi et al., 2019), rather than in a post-processing step

Multitasking

• Our multitasking architecture minimizes the combined loss:

$$\min_{w_{1:d},\beta,\epsilon} \text{REGloss}(w_{1:d}) + \lambda_1 \text{RRloss}(w_{1:k},\beta) + \lambda_2 \text{TMLEloss}(w_{1:d},\beta,\epsilon) + R(w_{1:d},\beta)$$

where:

$$\begin{aligned} \text{REGloss}(w_{1:d}) &:= \mathbb{E}_n \left[(Y - \gamma(Z; w_{1:d}))^2 \right] \\ \text{RRloss}(w_{1:k}, \beta) &:= \mathbb{E}_n \left[\alpha(Z; w_{1:k}, \beta)^2 - 2 \, m(W; \alpha(\cdot; w_{1:k}, \beta)) \right] \\ \text{TMLEloss}(w_{1:d}, \beta, \epsilon) &:= \mathbb{E}_n \left[(Y - \gamma(Z; w_{1:d}) - \epsilon \cdot \alpha(Z; w_{1:k}, \beta))^2 \right] \end{aligned}$$

and $R(w_{1:d}, \beta)$ is a penalty that does not take ϵ as input

• We train the weights by minimizing this loss with stochastic first-order methods

Sieve Parametrization

- One approach to estimating α_0 by regression trees would be to allow splits with respect to all input variables Z=(T,X)
 - \bullet However, this approach could introduce large discontinuities in T , under which our asymptotic theory is not valid

Sieve Parametrization

- One approach to estimating α_0 by regression trees would be to allow splits with respect to all input variables Z = (T, X)
 - However, this approach could introduce large discontinuities in T, under which our asymptotic theory is not valid
- Instead, we parametrize $\alpha(Z)$ as a locally linear function:

$$\alpha(Z) = \langle \phi_{\alpha}(T, X), \beta_{\alpha}(X) \rangle,$$

where $\phi_{\alpha}(T,X)$ is a (smooth) pre-defined feature map and $\beta_{\alpha}(X)$ is a non-parametric component estimated based on the tree splits

Estimation by GRF

• The non-parametric component β_{α} minimizes the Riesz loss:

$$\min_{\beta_{\alpha}} \mathrm{E} \left[\beta_{\alpha}(x)^{\top} \phi_{\alpha}(Z) \phi_{\alpha}(Z)^{\top} \beta_{\alpha}(x) - 2 \beta_{\alpha}(x)^{\top} m(W; \phi_{\alpha}) \mid X = x \right]$$

which admits the following local first order condition:

$$\mathrm{E}\left[\phi_{\alpha}(Z)\phi_{\alpha}(Z)^{\top}\beta_{\alpha}(x)-m(W;\phi_{\alpha})\mid X=x\right]=0$$

Estimation by GRF

• The non-parametric component β_{α} minimizes the Riesz loss:

$$\min_{\beta_{\alpha}} \mathbb{E}\left[\beta_{\alpha}(x)^{\top} \phi_{\alpha}(Z) \phi_{\alpha}(Z)^{\top} \beta_{\alpha}(x) - 2 \beta_{\alpha}(x)^{\top} m(W; \phi_{\alpha}) \mid X = x\right]$$

which admits the following local first order condition:

$$\mathbb{E}\left[\phi_{\alpha}(Z)\phi_{\alpha}(Z)^{\top}\beta_{\alpha}(x) - m(W;\phi_{\alpha}) \mid X = x\right] = 0$$

- This falls into the class of problems defined by solutions to moment conditions considered in the Generalized Random Forests framework of Athey et al. (2019)
 - We modify the original GRF heterogeneity criterion to maximize a version weighted by the local Jacobians $J(\text{child}) = |\text{child}|^{-1} \sum_{i \in \text{child}} \phi_{\alpha}(Z_i) \phi_{\alpha}(Z_i)^{\top}$
 - We want to penalize splits where the covariance matrix of the feature map is ill-conditioned

Regression

• We can do the same for the regression function:

$$\min_{\beta_{\gamma}} \mathrm{E}\left[(Y - \phi_{\gamma}(Z)^{\top} \beta_{\gamma}(X))^{2} \right]$$

with local first order condition:

$$\mathrm{E}\left[\phi_{\gamma}(Z)\phi_{\gamma}(Z)^{\top}\beta_{\gamma}(x)-\phi_{\gamma}(Z)Y\mid X=x\right]=0$$

 In fact, we can even build a multitasking version of ForestRiesz where we stack the moment conditions

Results: Average Treatment Effect in the IHDP Dataset

- IHDP was an experiment designed to evaluate the effect of home visits and attendance at specialized clinics T on future developmental outcomes Y of low birth weight infants
- n = 747, dim(X) = 25 continuous and binary covariates
- Taking X from the data, generate T and 1000 synthetic draws of Y with the NPCI $\,\mathbb{R}\,$ package, same setting as Shi et al. (2019) for comparability

Results: Average Treatment Effect in the IHDP Dataset

Table: Mean Absolute Error (MAE) and its standard error over 1000 semi-synthetic datasets based on the IHDP experiment

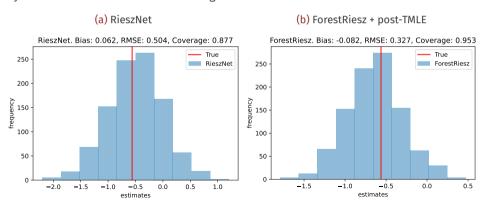
(a) RieszNet		(b) ForestRiesz	
	MAE \pm std. err.		MAE \pm std. err.
RieszNet	0.110 ± 0.003	ForestRiesz	0.126 ± 0.004
Benchmark: Dragonnet (Shi et al., 2019)	0.146 ± 0.010	Benchmark: CausalForest (Athey et al., 2019)	0.728 ± 0.028

Results: Average Derivative in the BHP Gasoline Demand Data

- Gasoline demand data from 2001 National Household Travel Survey (Blundell et al., 2017). Want to estimate average derivative of $Y = \log(\text{quantity})$ with respect to $T = \log(\text{price})$
- n = 3466, $\dim(X) = 50$ continuous and binary covariates, including household characteristics and geographic controls
- Take X and estimate $\mu_T(X) := \mathrm{E}\left[T \mid X\right]$, $\sigma_T^2(X) := \mathrm{Var}(T \mid X)$ from the data
- Draw $T \sim N(\mu_T(X), \sigma_T^2(X))$ and generate $Y = f(T, X) + \varepsilon$. Here we show the most complex $f(\cdot)$ with linear and non-linear confounding

Results: Average Derivative in the BHP Gasoline Demand Data

Figure: RieszNet and ForestRiesz: bias, RMSE, coverage and distribution of estimates over 1000 semi-synthetic datasets based on the BHP gasoline demand data



Ablation Studies: RieszNet

Effect of Multitasking and End-to-End Learning

 Row 2 uses no multitasking, the Riesz representer and regression function are estimated using separate NNs

Table: IHDP ablation studies for RieszNet

	F	RieszNet		
	Bias	RMSE	Cov.	
Baseline	-0.044	0.147	0.950	
Separate NNs	-0.176	0.411	0.880	
No end-to-end	-0.051	1.221	0.650	
TMLE post-proc.	-0.088	0.182	0.950	

Ablation Studies: RieszNet

Effect of Multitasking and End-to-End Learning

 Row 3 removes "end-to-end" training of the shared representation: the weights of the common layers are trained on the Riesz loss only, then frozen when optimizing the regression loss

Table: IHDP ablation studies for RieszNet

	F	RieszNet		
	Bias	RMSE	Cov.	
Baseline	-0.044	0.147	0.950	
Separate NNs	-0.176	0.411	0.880	
No end-to-end	-0.051	1.221	0.650	
TMLE post-proc.	-0.088	0.182	0.950	

Ablation Studies: RieszNet

Effect of Multitasking and End-to-End Learning

• Row 4 removes "end-to-end" learning of the TMLE adjustment: we set $\lambda_2=0$ and then adjust the outputs of RieszNet in a standard TMLE post-processing step

Table: IHDP ablation studies for RieszNet

	F	RieszNet		
	Bias	RMSE	Cov.	
Baseline	-0.044	0.147	0.950	
Separate NNs	-0.176	0.411	0.880	
No end-to-end	-0.051	1.221	0.650	
TMLE post-proc.	-0.088	0.182	0.950	

Ablation Studies: ForestRiesz

Effect of Multitasking and Cross-fitting

- Cross-fitting: split the sample in folds $\ell=1,\dots 5$. For each ℓ , use the data *not* in ℓ to obtain $\widehat{\gamma}_{-\ell}$ and $\widehat{\alpha}_{-\ell}$, and then use the data $in\ \ell$ to estimate the average moment
- Double cross-fitting: the same, but $\widehat{\gamma}_{-\ell}$ and $\widehat{\alpha}_{-\ell}$ are estimated using different sub-samples

Table: BHP ablation studies for ForestRiesz

	ForestRiesz + post-TMLE		
	Bias	RMSE	Cov.
Baseline (x-fit, m-task)	-0.082	0.327	0.953
No x-fit, no m-task	-0.079	0.314	0.827
No x-fit, m-task	-0.060	0.326	0.835
X-fit, no m-task	-0.091	0.331	0.945
Double x-fit	-0.094	0.338	0.950

Summing Up

- Provide the first Auto-DML implementation using Neural Nets (RieszNet) and Random Forests (ForestRiesz)
 - Theory guarantees for generic Auto-DML in Chernozhukov et al. (2021)
- Experimentally evaluate the proposed methods in two settings (ATE and average derivative)
 - Find superior performance to benchmarks
 - Ablation studies to demonstrate which features of our estimators are crucial for the gains

Thank you for watching!