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Unconstrained minimization: finite-sum objective.

min f(w Zf(w

weRd
where n is the number of training examples.

° : Each f; is convex, differentiable and L;-smooth, implying that
f is L-smooth where L := max; L;.

° . f is u strongly-convex.



Introduction

@ For smooth, strongly-convex functions with condition number x, deterministic gradient
descent (GD) uses a constant step-size and has an O(exp(— T /k)) convergence rate.



Introduction

@ For smooth, strongly-convex functions with condition number x, deterministic gradient
descent (GD) uses a constant step-size and has an O(exp(— T /k)) convergence rate.

o Can be further improved to ©(exp(—T/+/k)) using Nesterov acceleration.



Introduction

@ For smooth, strongly-convex functions with condition number x, deterministic gradient
descent (GD) uses a constant step-size and has an O(exp(— T /k)) convergence rate.

o Can be further improved to ©(exp(—T/+/k)) using Nesterov acceleration.

@ Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an
©(1/T) convergence rate.



Introduction

@ For smooth, strongly-convex functions with condition number x, deterministic gradient
descent (GD) uses a constant step-size and has an O(exp(— T /k)) convergence rate.

o Can be further improved to ©(exp(—T/+/k)) using Nesterov acceleration.

@ Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an
©(1/T) convergence rate.

@ The two regimes require a different step-size choice (constant vs decreasing) and the
convergence rate is not adaptive to the noise (%) in the stochastic gradients.



Introduction

@ For smooth, strongly-convex functions with condition number x, deterministic gradient
descent (GD) uses a constant step-size and has an O(exp(— T /k)) convergence rate.

o Can be further improved to ©(exp(—T/+/k)) using Nesterov acceleration.

@ Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an
©(1/T) convergence rate.

@ The two regimes require a different step-size choice (constant vs decreasing) and the
convergence rate is not adaptive to the noise (%) in the stochastic gradients.

@ Require noise-adaptivity — one step-size sequence that can achieve the optimal rate in
both the deterministic and stochastic settings without knowledge of o2.
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Work that attains the O (exp(—T//i) ol l;) convergence rate for,

@ smooth, strongly-convex functions using SGD that switches between two carefully
designed step-sizes [Stich, 2019]. Requires knowledge of L, y and o2.

@ smooth functions satisfying the PL condition using SGD with a constant then decaying
step-size [Khaled and Richtarik, 2020]. Noise adaptive but requires knowledge of L, f.

@ smooth functions satisfying the PL condition using SGD with an exponentially decreasing
sequence of step-sizes [Li et al., 2020]. Noise adaptive but requires knowledge of L.
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@ Problem 1: All noise-adaptive methods require knowledge of problem-dependent constants,
and are not problem-adaptive.

@ None of the problem-adaptive methods [Duchi et al., 2011, Kingma and Ba, 2015,
Vaswani et al., 2019b, Loizou et al., 2021] are noise-adaptive when minimizing smooth,

strongly-convex functions.

@ Problem 2: Current noise-adaptive methods do not match the optimal /x dependence
and are sub-optimal in the deterministic setting.

1. Can we design SGD step-sizes that are simultaneously (i) problem-adaptive and (ii)

noise-adaptive — achieve the O <e><p(f T/k)+ %) rate without knowledge of L, y or 0?

2. Can we obtain the accelerated O (exp(fT,x' VE) + %) rate?
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Wit1 = Wk — Yk V fie(wi) (SGD)
——

=k

where vy is the problem-dependent scaling term that captures the smoothness and oy that
controls the decay of the step-size.

l/T
[Li et al., 2020]: a := [%} <1for f>1and ay := ak.

1

—  1/k
(1/100)k/1%
e (1/ 10(1))

Lie between the constant and 1/« decreasing 06
step-sizes, implying that for k € [T], ol

Qp € [%1] \
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!

Assuming (i) convexity and L-smoothness of each f;, (ii) y strong-convexity of f, SGD with

) s\K/T
Yk = 1,0k = (T) converges as,
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@ Result can be concluded from Li et al. [2020], but we do not require the growth condition
and use a different proof technique that helps handle unknown smoothness later.
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@ Use stochastic line-search (SLS) [Vaswani et al., 2019b] to set 74, the problem-dependent
part of the step-size.

@ Starting from a guess (Ymax) of the step-size, SLS uses a backtracking procedure and
returns the largest step-size 7, that satisfies the following conditions: v, < Ymax and

Foe(Wie — 1V (i) < Fae(wie) — i [V (w1 -

@ Ensures that v, € [min {2(1L;C)7’7max} ,’Vmax]

@ When o =0, SGD with o =1 for all k and 7 set according to SLS (with ¢ > 1/2) has
an O(exp(—T/k)) convergence to the minimizer [Vaswani et al., 2019b].

@ When o # 0, this method converges to a neighbourhood that depends on Ymaxo?.
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Convergence of SGD with SLS

k/T

Under the same assumptions, SGD with ayx = , Yk as the largest step-size that

—[@
N———

satisfies vx < Ymax and the SLS condition with ¢ = 1/2 converges as,
T «a 802 c1(K')*Ymax (In(7/8))?
& In(T/8) e? a?T
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- L _1 — 1.2
where r’ 1= max{lt, o } c1 = exp (5, |n(T/[-I))'

e O (exp(—T/n) + ”2/T) convergence to a neighbourhood determined by o2 and initial
estimation error (Ymax — Min {Ymax, 1 })-
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@ i is set before sampling ix. For simplicity, consider a fixed v, = v = 7 for some v > 0.

k)T
Under the same assumptions, SGD with o = (g) Yk = % converges as,
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where ¢, = exp (% %) [x]+ = max{x,0}, G = max;cp,1f(w;) — f*}.

@ Ensures convergence to the minimizer, but the rate is slowed down proportional to v.
@ For polynomial « sequences, Moulines and Bach [2011] show an exp(r) dependence on

the rate = exponential step-sizes are more robust towards misspecification.
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When minimizing a one-dimensional quadratic function f(w) = 3(xw — y)?, GD with

k/T
o = (g) . Yk = 7 for v > 3, satisfies

k
Wkt1 — w' = (wg — w’* Hl*l/a,
i=1

After k' := W In (%) iterations, we have that

Wi 1—W* 22k/W1—W*.
+

e If v =10, then k' > Lﬁj = divergence in the first ; (T/ y iterations, and the
optimality gap has been increased by a factor of 27/n(7/8).

@ Slowdown in rate is the price of misestimation of the smoothness. 5
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Accelerated SGD with exponentially decreasing step-sizes

Assumption on the noise: E; |V fi(w)||> < p||[VF(w)]|* + o2

Yk = wi + br (Wi — wi—1),
Witr1 = Yk — Yok Vi (Yi)- (ASGD)

= M
and b, = o S

k/T k/2T
where v = o7, ay = (?) k=141 (?)

Equivalent to Nesterov acceleration if we use a deterministic gradient V£ (yx) and
Y =7=1 and ax = 1 for all k.

14
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Under the same assumptions as before and (iii) the growth condition on the stochastic

k/T k/2T
gradients, ASGD with wy = y1, v = 2, ax = (g) N (%)

oL and

bk — (l—rkfl) rk—1 &

rk+r371 o converges as,
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)
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E[f(wr 1) — F] < 25 exp (—\/% e

where 3 = exp (ﬁ)

@ In the deterministic setting, p = 1 and o = 0, and ASGD is near-optimal.
@ When o = 0, ASGD improves over Vaswani et al. [2019a]. and matches [Mishkin, 2020].
@ When o # 0, Cohen et al. [2018], Vaswani et al. [2019a] use a constant step-size and
prove convergence to a neighbourhood.
@ Aybat et al. [2019] use a more complicated algorithm and prove this rate when T >2/k. 15
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@ Assume v, =y = i = ﬁ and fi = v, pu where v, < 1.

Under the same assumptions and v = v, v, < px, ASGD with w; = y1, v« =

k/T k/2T B
ax = (g) CR=vup S o= /2 (?) and by = % converges as,
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Experimental evaluation

e Conservative decorrelated SLS: Line-search starting from ~,_1 (with 79 = Ymax) for a
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Other results and Future work

@ Results for strongly star-convex functions [Hinder et al., 2020].

Effect of batch-size for all results.

Result showing that no polynomial step-size can achieve the desired noise-adaptive rate.

Exponential step-sizes do not seem to be noise-adaptive for convex functions (without
strong-convexity) [Upper-bound]. Results showing that it is unlikely any
exponential /polynomial step-size will be noise-adaptive in this case.
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@ Results for strongly star-convex functions [Hinder et al., 2020].
o Effect of batch-size for all results.
@ Result showing that no polynomial step-size can achieve the desired noise-adaptive rate.

@ Exponential step-sizes do not seem to be noise-adaptive for convex functions (without
strong-convexity) [Upper-bound]. Results showing that it is unlikely any
exponential /polynomial step-size will be noise-adaptive in this case.

@ Algorithm without any price of misestimation.

@ Step-size schemes that are noise-adaptive for convex functions.
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Questions?

Paper: https://arxiv.org/abs/2110.11442
Code: https://github.com/R3za/expsls

Contact: vaswani.sharan@gmail.com


https://arxiv.org/abs/2110.11442
https://github.com/R3za/expsls
vaswani.sharan@gmail.com
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