Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent

Sharan Vaswani, Benjamin Dubois-Taine, Reza Babanezhad

Problem

Unconstrained minimization: finite-sum objective.

$$\min_{w \in \mathbb{R}^d} f(w) := \frac{1}{n} \sum_{i=1}^n f_i(w)$$

where n is the number of training examples.

- Smoothness and convexity: Each f_i is convex, differentiable and L_i -smooth, implying that f is L-smooth where $L := \max_i L_i$.
- Strong convexity: f is μ strongly-convex.

1

• For smooth, strongly-convex functions with condition number κ , deterministic gradient descent (GD) uses a constant step-size and has an $O(\exp(-T/\kappa))$ convergence rate.

2

- For smooth, strongly-convex functions with condition number κ , deterministic gradient descent (GD) uses a constant step-size and has an $O(\exp(-T/\kappa))$ convergence rate.
- Can be further improved to $\Theta(\exp(-T/\sqrt{\kappa}))$ using Nesterov acceleration.

- For smooth, strongly-convex functions with condition number κ , deterministic gradient descent (GD) uses a constant step-size and has an $O(\exp(-T/\kappa))$ convergence rate.
- Can be further improved to $\Theta(\exp(-T/\sqrt{\kappa}))$ using Nesterov acceleration.
- Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an $\Theta(1/T)$ convergence rate.

- For smooth, strongly-convex functions with condition number κ , deterministic gradient descent (GD) uses a constant step-size and has an $O(\exp(-T/\kappa))$ convergence rate.
- Can be further improved to $\Theta(\exp(-T/\sqrt{\kappa}))$ using Nesterov acceleration.
- Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an $\Theta(1/T)$ convergence rate.
- The two regimes require a different step-size choice (constant vs decreasing) and the convergence rate is not adaptive to the noise (σ^2) in the stochastic gradients.

- For smooth, strongly-convex functions with condition number κ , deterministic gradient descent (GD) uses a constant step-size and has an $O(\exp(-T/\kappa))$ convergence rate.
- Can be further improved to $\Theta(\exp(-T/\sqrt{\kappa}))$ using Nesterov acceleration.
- Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an $\Theta(1/T)$ convergence rate.
- The two regimes require a different step-size choice (constant vs decreasing) and the convergence rate is not adaptive to the noise (σ^2) in the stochastic gradients.
- Require noise-adaptivity one step-size sequence that can achieve the optimal rate in both the deterministic and stochastic settings without knowledge of σ^2 .

Work that attains the
$$\tilde{O}\left(\exp(-T/\kappa)+\frac{\sigma^2}{T}\right)$$
 convergence rate for,

Work that attains the
$$\tilde{O}\left(\exp(-T/\kappa)+\frac{\sigma^2}{T}\right)$$
 convergence rate for,

• smooth, strongly-convex functions using SGD that switches between two carefully designed step-sizes [Stich, 2019]. Requires knowledge of L, μ and σ^2 .

Work that attains the $\tilde{O}\left(\exp(-T/\kappa)+\frac{\sigma^2}{T}\right)$ convergence rate for,

- smooth, strongly-convex functions using SGD that switches between two carefully designed step-sizes [Stich, 2019]. Requires knowledge of L, μ and σ^2 .
- smooth functions satisfying the PL condition using SGD with a constant then decaying step-size [Khaled and Richtárik, 2020]. Noise adaptive but requires knowledge of L, μ .

Work that attains the $\tilde{O}\left(\exp(-T/\kappa)+\frac{\sigma^2}{T}\right)$ convergence rate for,

- smooth, strongly-convex functions using SGD that switches between two carefully designed step-sizes [Stich, 2019]. Requires knowledge of L, μ and σ^2 .
- smooth functions satisfying the PL condition using SGD with a constant then decaying step-size [Khaled and Richtárik, 2020]. Noise adaptive but requires knowledge of L, μ.
- smooth functions satisfying the PL condition using SGD with an exponentially decreasing sequence of step-sizes [Li et al., 2020]. Noise adaptive but requires knowledge of *L*.

Motivation

• Problem 1: All noise-adaptive methods require knowledge of problem-dependent constants, and are not problem-adaptive.

Motivation

- Problem 1: All noise-adaptive methods require knowledge of problem-dependent constants, and are not problem-adaptive.
- None of the problem-adaptive methods [Duchi et al., 2011, Kingma and Ba, 2015, Vaswani et al., 2019b, Loizou et al., 2021] are noise-adaptive when minimizing smooth, strongly-convex functions.
- Problem 2: Current noise-adaptive methods do not match the optimal $\sqrt{\kappa}$ dependence and are sub-optimal in the deterministic setting.

Motivation

- Problem 1: All noise-adaptive methods require knowledge of problem-dependent constants, and are not problem-adaptive.
- None of the problem-adaptive methods [Duchi et al., 2011, Kingma and Ba, 2015, Vaswani et al., 2019b, Loizou et al., 2021] are noise-adaptive when minimizing smooth, strongly-convex functions.
- Problem 2: Current noise-adaptive methods do not match the optimal $\sqrt{\kappa}$ dependence and are sub-optimal in the deterministic setting.
- 1. Can we design SGD step-sizes that are simultaneously (i) problem-adaptive and (ii) noise-adaptive achieve the $\tilde{O}\left(\exp(-T/\kappa)+\frac{\sigma^2}{T}\right)$ rate without knowledge of L, μ or σ^2 ?
- 2. Can we obtain the accelerated $\tilde{O}\left(\exp(-T/\sqrt{\kappa}) + \frac{\sigma^2}{T}\right)$ rate?

Outline

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

Outline

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

SGD with exponentially decreasing step-sizes

$$w_{k+1} = w_k - \underbrace{\gamma_k \alpha_k}_{:=\eta_k} \nabla f_{ik}(w_k)$$
 (SGD)

where γ_k is the problem-dependent scaling term that captures the smoothness and α_k that controls the decay of the step-size.

SGD with exponentially decreasing step-sizes

$$w_{k+1} = w_k - \underbrace{\gamma_k \alpha_k}_{:=\eta_k} \nabla f_{ik}(w_k)$$
 (SGD)

where γ_k is the problem-dependent scaling term that captures the smoothness and α_k that controls the decay of the step-size.

Exponentially decreasing step-sizes [Li et al., 2020]: $\alpha := \left[\frac{\beta}{T}\right]^{1/T} \leq 1$ for $\beta \geq 1$ and $\alpha_k := \alpha^k$.

6

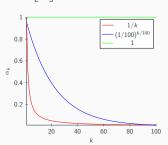
SGD with exponentially decreasing step-sizes

$$w_{k+1} = w_k - \underbrace{\gamma_k \alpha_k}_{:=n_k} \nabla f_{ik}(w_k)$$
 (SGD)

where γ_k is the problem-dependent scaling term that captures the smoothness and α_k that controls the decay of the step-size.

Exponentially decreasing step-sizes [Li et al., 2020]: $\alpha := \left\lceil \frac{\beta}{T} \right\rceil^{1/T} \leq 1$ for $\beta \geq 1$ and $\alpha_k := \alpha^k$.

Lie between the constant and 1/k decreasing step-sizes, implying that for $k \in [T]$, $\alpha_k \in \left[\frac{1}{k}, 1\right]$.



Warm-up - known smoothness

• Assumption on the noise: $\sigma^2 := \mathbb{E}_i[f_i(w^*) - f_i^*].$

Warm-up - known smoothness

• Assumption on the noise: $\sigma^2 := \mathbb{E}_i[f_i(w^*) - f_i^*].$

SGD with known smoothness

Assuming (i) convexity and L-smoothness of each f_i , (ii) μ strong-convexity of f, SGD with $\gamma_k = \frac{1}{L}$, $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$ converges as,

$$\mathbb{E} \|w_{T+1} - w^*\|^2 \le \|w_1 - w^*\|^2 c_2 \exp\left(-\frac{T}{\kappa} \frac{\alpha}{\ln(T/\beta)}\right) + \frac{8\sigma^2 c_2 \kappa}{\mu e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T},$$

where
$$\kappa = \frac{L}{\mu}$$
 and $c_2 = \exp\left(\frac{1}{\kappa} \cdot \frac{2\beta}{\ln(T/\beta)}\right)$.

7

Warm-up - known smoothness

• Assumption on the noise: $\sigma^2 := \mathbb{E}_i[f_i(w^*) - f_i^*].$

SGD with known smoothness

Assuming (i) convexity and L-smoothness of each f_i , (ii) μ strong-convexity of f, SGD with $\gamma_k = \frac{1}{L}$, $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$ converges as,

$$\mathbb{E} \| w_{T+1} - w^* \|^2 \le \| w_1 - w^* \|^2 c_2 \exp \left(-\frac{T}{\kappa} \frac{\alpha}{\ln(T/\beta)} \right) + \frac{8\sigma^2 c_2 \kappa}{\mu e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T},$$

where
$$\kappa = \frac{L}{\mu}$$
 and $c_2 = \exp\left(\frac{1}{\kappa} \cdot \frac{2\beta}{\ln(T/\beta)}\right)$.

• Result can be concluded from Li et al. [2020], but we do not require the growth condition and use a different proof technique that helps handle unknown smoothness later.

7

• Use stochastic line-search (SLS) [Vaswani et al., 2019b] to set γ_k , the problem-dependent part of the step-size.

- Use stochastic line-search (SLS) [Vaswani et al., 2019b] to set γ_k , the problem-dependent part of the step-size.
- Starting from a guess (γ_{max}) of the step-size, SLS uses a backtracking procedure and returns the largest step-size γ_k that satisfies the following conditions: $\gamma_k \leq \gamma_{max}$ and

$$f_{ik}(w_k - \gamma_k \nabla f_{ik}(w_k)) \leq f_{ik}(w_k) - c\gamma_k \|\nabla f_{ik}(w_k)\|^2$$
.

- Use stochastic line-search (SLS) [Vaswani et al., 2019b] to set γ_k , the problem-dependent part of the step-size.
- Starting from a guess (γ_{\max}) of the step-size, SLS uses a backtracking procedure and returns the largest step-size γ_k that satisfies the following conditions: $\gamma_k \leq \gamma_{\max}$ and

$$f_{ik}(w_k - \gamma_k \nabla f_{ik}(w_k)) \leq f_{ik}(w_k) - c\gamma_k \|\nabla f_{ik}(w_k)\|^2$$
.

• Ensures that $\gamma_k \in \left[\min\left\{\frac{2(1-c)}{L_{lk}}, \gamma_{\max}\right\}, \gamma_{\max}\right]$.

- Use stochastic line-search (SLS) [Vaswani et al., 2019b] to set γ_k , the problem-dependent part of the step-size.
- Starting from a guess (γ_{\max}) of the step-size, SLS uses a backtracking procedure and returns the largest step-size γ_k that satisfies the following conditions: $\gamma_k \leq \gamma_{\max}$ and

$$f_{ik}(w_k - \gamma_k \nabla f_{ik}(w_k)) \leq f_{ik}(w_k) - c\gamma_k \|\nabla f_{ik}(w_k)\|^2$$
.

- Ensures that $\gamma_k \in \left[\min\left\{\frac{2(1-c)}{L_{ik}}, \gamma_{\max}\right\}, \gamma_{\max}\right]$.
- When $\sigma=0$, SGD with $\alpha_k=1$ for all k and γ_k set according to SLS (with $c\geq 1/2$) has an $O(\exp(-T/\kappa))$ convergence to the minimizer [Vaswani et al., 2019b].

- Use stochastic line-search (SLS) [Vaswani et al., 2019b] to set γ_k , the problem-dependent part of the step-size.
- Starting from a guess (γ_{\max}) of the step-size, SLS uses a backtracking procedure and returns the largest step-size γ_k that satisfies the following conditions: $\gamma_k \leq \gamma_{\max}$ and

$$f_{ik}(w_k - \gamma_k \nabla f_{ik}(w_k)) \leq f_{ik}(w_k) - c\gamma_k \|\nabla f_{ik}(w_k)\|^2$$
.

- Ensures that $\gamma_k \in \left[\min\left\{\frac{2(1-c)}{L_{ik}}, \gamma_{\max}\right\}, \gamma_{\max}\right]$.
- When $\sigma=0$, SGD with $\alpha_k=1$ for all k and γ_k set according to SLS (with $c\geq 1/2$) has an $O(\exp(-T/\kappa))$ convergence to the minimizer [Vaswani et al., 2019b].
- When $\sigma \neq 0$, this method converges to a neighbourhood that depends on $\gamma_{\max}\sigma^2$.

SGD with SLS - Upper Bound

Under the same assumptions, SGD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, γ_k as the largest step-size that satisfies $\gamma_k \leq \gamma_{\max}$ and the SLS condition with c = 1/2 converges as,

$$\mathbb{E} \|w_{T+1} - w^*\|^2 \le \|w_1 - w^*\|^2 c_1 \exp\left(-\frac{T}{\kappa'} \frac{\alpha}{\ln(T/\beta)}\right) + \frac{8\sigma^2 c_1(\kappa')^2 \gamma_{\text{max}}}{e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T} + \frac{2\sigma^2 c_1 \kappa' \ln(T/\beta) \left(\gamma_{\text{max}} - \min\left\{\gamma_{\text{max}}, \frac{1}{L}\right\}\right)}{e\alpha},$$

where
$$\kappa' := \max\left\{\frac{L}{\mu}, \frac{1}{\mu\gamma_{\mathsf{max}}}\right\}$$
, $c_1 = \exp\left(\frac{1}{\kappa'} \cdot \frac{2\beta}{\ln(T/\beta)}\right)$.

9

SGD with SLS - Upper Bound

Under the same assumptions, SGD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, γ_k as the largest step-size that satisfies $\gamma_k \leq \gamma_{\text{max}}$ and the SLS condition with c = 1/2 converges as,

$$\mathbb{E} \|w_{T+1} - w^*\|^2 \le \|w_1 - w^*\|^2 c_1 \exp\left(-\frac{T}{\kappa'} \frac{\alpha}{\ln(T/\beta)}\right) + \frac{8\sigma^2 c_1(\kappa')^2 \gamma_{\text{max}}}{e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T} + \frac{2\sigma^2 c_1 \kappa' \ln(T/\beta) \left(\gamma_{\text{max}} - \min\left\{\gamma_{\text{max}}, \frac{1}{L}\right\}\right)}{e\alpha},$$

where $\kappa' := \max\left\{\frac{L}{\mu}, \frac{1}{\mu\gamma_{\mathsf{max}}}\right\}$, $c_1 = \exp\left(\frac{1}{\kappa'} \cdot \frac{2\beta}{\ln(T/\beta)}\right)$.

• $O\left(\exp(^{-T}/\kappa) + \sigma^2/\tau\right)$ convergence to a neighbourhood determined by σ^2 and initial estimation error $\left(\gamma_{\max} - \min\left\{\gamma_{\max}, \frac{1}{L}\right\}\right)$.

9

SGD with SLS - Lower Bound

When using T iterations of SGD to minimize the sum $f(w) = \frac{f_1(w) + f_2(w)}{2}$ of two one-dimensional quadratics, $f_1(w) = \frac{1}{2}(w-1)^2$ and $f_2(w) = \frac{1}{2}\left(2w+\frac{1}{2}\right)^2$, setting the step-size using SLS with $\gamma_{\text{max}} \geq 1$ and $c \geq \frac{1}{2}$, any convergent sequence of α_k results in convergence to a neighbourhood of the solution. Specifically, if $w_1 > 0$, then,

$$\mathbb{E}(w_T - w^*) \geq \min\left(w_1, \frac{3}{8}\right).$$

SGD with SLS - Lower Bound

When using T iterations of SGD to minimize the sum $f(w) = \frac{f_1(w) + f_2(w)}{2}$ of two one-dimensional quadratics, $f_1(w) = \frac{1}{2}(w-1)^2$ and $f_2(w) = \frac{1}{2}\left(2w + \frac{1}{2}\right)^2$, setting the step-size using SLS with $\gamma_{\text{max}} \geq 1$ and $c \geq \frac{1}{2}$, any convergent sequence of α_k results in convergence to a neighbourhood of the solution. Specifically, if $w_1 > 0$, then,

$$\mathbb{E}(w_{\mathcal{T}}-w^*)\geq \min\left(w_1,\frac{3}{8}\right).$$

• Lower-bound is not specific to SLS and will work for other methods [Loizou et al., 2021, Berrada et al., 2020] that set the step-size in an online fashion.

SGD with SLS - Lower Bound

When using T iterations of SGD to minimize the sum $f(w) = \frac{f_1(w) + f_2(w)}{2}$ of two one-dimensional quadratics, $f_1(w) = \frac{1}{2}(w-1)^2$ and $f_2(w) = \frac{1}{2}\left(2w + \frac{1}{2}\right)^2$, setting the step-size using SLS with $\gamma_{\text{max}} \geq 1$ and $c \geq \frac{1}{2}$, any convergent sequence of α_k results in convergence to a neighbourhood of the solution. Specifically, if $w_1 > 0$, then,

$$\mathbb{E}(w_{\mathcal{T}}-w^*)\geq \min\left(w_1,\frac{3}{8}\right).$$

- Lower-bound is not specific to SLS and will work for other methods [Loizou et al., 2021, Berrada et al., 2020] that set the step-size in an online fashion.
- ullet Lower-bound is not specific to exponential step-sizes and works for any α_k sequence.

SGD with SLS - Lower Bound

When using T iterations of SGD to minimize the sum $f(w) = \frac{f_1(w) + f_2(w)}{2}$ of two one-dimensional quadratics, $f_1(w) = \frac{1}{2}(w-1)^2$ and $f_2(w) = \frac{1}{2}\left(2w+\frac{1}{2}\right)^2$, setting the step-size using SLS with $\gamma_{\text{max}} \geq 1$ and $c \geq \frac{1}{2}$, any convergent sequence of α_k results in convergence to a neighbourhood of the solution. Specifically, if $w_1 > 0$, then,

$$\mathbb{E}(w_{\mathcal{T}}-w^*)\geq \min\left(w_1,\frac{3}{8}\right).$$

- Lower-bound is not specific to SLS and will work for other methods [Loizou et al., 2021, Berrada et al., 2020] that set the step-size in an online fashion.
- ullet Lower-bound is not specific to exponential step-sizes and works for any α_k sequence.
- Neighbourhood term is the price of misestimation of the smoothness.

SGD with SLS - Lower Bound

When using T iterations of SGD to minimize the sum $f(w) = \frac{f_1(w) + f_2(w)}{2}$ of two one-dimensional quadratics, $f_1(w) = \frac{1}{2}(w-1)^2$ and $f_2(w) = \frac{1}{2}\left(2w+\frac{1}{2}\right)^2$, setting the step-size using SLS with $\gamma_{\text{max}} \geq 1$ and $c \geq \frac{1}{2}$, any convergent sequence of α_k results in convergence to a neighbourhood of the solution. Specifically, if $w_1 > 0$, then,

$$\mathbb{E}(w_{\mathcal{T}}-w^*)\geq \min\left(w_1,\frac{3}{8}\right).$$

- Lower-bound is not specific to SLS and will work for other methods [Loizou et al., 2021, Berrada et al., 2020] that set the step-size in an online fashion.
- ullet Lower-bound is not specific to exponential step-sizes and works for any α_k sequence.
- Neighbourhood term is the price of misestimation of the smoothness.

What if estimate the smoothness offline – without any correlation between γ_k and i_k ?

• γ_k is set *before* sampling i_k . For simplicity, consider a fixed $\gamma_k = \gamma = \frac{\nu}{L}$ for some $\nu > 0$.

• γ_k is set before sampling i_k . For simplicity, consider a fixed $\gamma_k = \gamma = \frac{\nu}{L}$ for some $\nu > 0$.

SGD with offline estimation of the smoothness - Upper Bound

Under the same assumptions, SGD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $\gamma_k = \frac{\nu}{L}$ converges as,

$$||w_{T+1} - w^*||^2 \le ||w_1 - w^*||^2 c_2 \exp\left(-\frac{\min\{\nu, 1\}}{\kappa} \frac{T}{\ln(T/\beta)}\right) + \max\{\nu^2, 1\} \frac{8c_2\kappa \ln(T/\beta)}{\mu e^2 \alpha^2 T} \left[2\sigma^2 \ln(T/\beta) + G\left[\ln(\nu)\right]_+\right]$$

where
$$c_2 = \exp\left(\frac{1}{\kappa} \frac{2\beta}{\ln(T/\beta)}\right)$$
, $[x]_+ = \max\{x, 0\}$, $G = \max_{j \in [k_0]} \{f(w_j) - f^*\}$.

• γ_k is set before sampling i_k . For simplicity, consider a fixed $\gamma_k = \gamma = \frac{\nu}{L}$ for some $\nu > 0$.

SGD with offline estimation of the smoothness - Upper Bound

Under the same assumptions, SGD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $\gamma_k = \frac{\nu}{L}$ converges as,

$$||w_{T+1} - w^*||^2 \le ||w_1 - w^*||^2 c_2 \exp\left(-\frac{\min\{\nu, 1\}}{\kappa} \frac{T}{\ln(T/\beta)}\right) + \max\{\nu^2, 1\} \frac{8c_2\kappa \ln(T/\beta)}{\mu e^2 \alpha^2 T} \left[2\sigma^2 \ln(T/\beta) + G\left[\ln(\nu)\right]_+\right]$$

where
$$c_2=\exp\left(\frac{1}{\kappa}\,\frac{2\beta}{\ln(T/\beta)}\right)$$
, $[x]_+=\max\{x,0\}$, $G=\max_{j\in[k_0]}\{f(w_j)-f^*\}$.

ullet Ensures convergence to the minimizer, but the rate is slowed down proportional to u.

• γ_k is set before sampling i_k . For simplicity, consider a fixed $\gamma_k = \gamma = \frac{\nu}{L}$ for some $\nu > 0$.

SGD with offline estimation of the smoothness - Upper Bound

Under the same assumptions, SGD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $\gamma_k = \frac{\nu}{L}$ converges as,

$$\begin{aligned} \|w_{T+1} - w^*\|^2 &\leq \|w_1 - w^*\|^2 \ c_2 \exp\left(-\frac{\min\{\nu, 1\}}{\kappa} \frac{T}{\ln(T/\beta)}\right) \\ &+ \max\{\nu^2, 1\} \frac{8c_2\kappa \ln(T/\beta)}{\mu \ e^2 \ \alpha^2 \ T} \left[2\sigma^2 \ln(T/\beta) + G\left[\ln(\nu)\right]_+\right] \end{aligned}$$

where
$$c_2 = \exp\left(\frac{1}{\kappa} \frac{2\beta}{\ln(T/\beta)}\right)$$
, $[x]_+ = \max\{x, 0\}$, $G = \max_{j \in [k_0]} \{f(w_j) - f^*\}$.

- ullet Ensures convergence to the minimizer, but the rate is slowed down proportional to ν .
- For polynomial α_k sequences, Moulines and Bach [2011] show an $\exp(\nu)$ dependence on the rate \implies exponential step-sizes are more robust towards misspecification.

SGD with offline estimation of the smoothness - Lower Bound

When minimizing a one-dimensional quadratic function $f(w) = \frac{1}{2}(xw - y)^2$, GD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $\gamma_k = \frac{\nu}{L}$ for $\nu > 3$, satisfies

$$w_{k+1} - w^* = (w_1 - w^*) \prod_{i=1}^k (1 - \nu \alpha_i).$$

After $k':=\frac{T}{\ln(T/\beta)}\ln\left(\frac{\nu}{3}\right)$ iterations, we have that

$$|w_{k'+1}-w^*|\geq 2^{k'}|w_1-w^*|.$$

SGD with offline estimation of the smoothness - Lower Bound

When minimizing a one-dimensional quadratic function $f(w) = \frac{1}{2}(xw - y)^2$, GD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $\gamma_k = \frac{\nu}{L}$ for $\nu > 3$, satisfies

$$w_{k+1} - w^* = (w_1 - w^*) \prod_{i=1}^k (1 - \nu \alpha_i).$$

After $k':=\frac{T}{\ln(T/\beta)}\ln\left(\frac{\nu}{3}\right)$ iterations, we have that

$$|w_{k'+1}-w^*|\geq 2^{k'}|w_1-w^*|.$$

• If $\nu=10$, then $k'\geq \lfloor\frac{T}{\ln(T/\beta)}\rfloor\implies$ divergence in the first $\frac{T}{\ln(T/\beta)}$ iterations, and the optimality gap has been increased by a factor of $2^{T/\ln(T/\beta)}$.

SGD with offline estimation of the smoothness - Lower Bound

When minimizing a one-dimensional quadratic function $f(w) = \frac{1}{2}(xw - y)^2$, GD with $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $\gamma_k = \frac{\nu}{L}$ for $\nu > 3$, satisfies

$$w_{k+1} - w^* = (w_1 - w^*) \prod_{i=1}^k (1 - \nu \alpha_i).$$

After $k' := \frac{T}{\ln(T/\beta)} \ln\left(\frac{\nu}{3}\right)$ iterations, we have that

$$|w_{k'+1}-w^*|\geq 2^{k'}|w_1-w^*|.$$

- If $\nu=10$, then $k'\geq \lfloor \frac{T}{\ln(T/\beta)}\rfloor \implies$ divergence in the first $\frac{T}{\ln(T/\beta)}$ iterations, and the optimality gap has been increased by a factor of $2^{T/\ln(T/\beta)}$.
- Slowdown in rate is the price of misestimation of the smoothness.

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

Accelerated SGD with exponentially decreasing step-sizes

Assumption on the noise: $\mathbb{E}_{i} \|\nabla f_{i}(w)\|^{2} \leq \rho \|\nabla f(w)\|^{2} + \sigma^{2}$

Accelerated SGD with exponentially decreasing step-sizes

Assumption on the noise:
$$\mathbb{E}_i \|\nabla f_i(w)\|^2 \leq \rho \|\nabla f(w)\|^2 + \sigma^2$$

$$y_k = w_k + b_k (w_k - w_{k-1}),$$

$$w_{k+1} = y_k - \gamma_k \alpha_k \nabla f_{ik}(y_k).$$
 (ASGD)

where
$$\gamma_k = \frac{1}{\rho L}$$
, $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $r_k = \sqrt{\frac{\mu}{\rho L}} \left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k = \frac{(1-r_{k-1})\,r_{k-1}\,\alpha}{r_k + r_{k-1}^2\,\alpha}$.

Accelerated SGD with exponentially decreasing step-sizes

Assumption on the noise: $\mathbb{E}_{i} \|\nabla f_{i}(w)\|^{2} \leq \rho \|\nabla f(w)\|^{2} + \sigma^{2}$

$$y_k = w_k + b_k (w_k - w_{k-1}),$$

$$w_{k+1} = y_k - \gamma_k \alpha_k \nabla f_{ik}(y_k).$$
 (ASGD)

where
$$\gamma_k = \frac{1}{\rho L}$$
, $\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$, $r_k = \sqrt{\frac{\mu}{\rho L}} \left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k = \frac{(1-r_{k-1})\,r_{k-1}\,\alpha}{r_k + r_{k-1}^2\,\alpha}$.

Equivalent to Nesterov acceleration if we use a deterministic gradient $\nabla f(y_k)$ and $\gamma_k = \gamma = \frac{1}{L}$ and $\alpha_k = 1$ for all k.

Convergence of ASGD

Under the same assumptions as before and (iii) the growth condition on the stochastic gradients, ASGD with $w_1=y_1$, $\gamma_k=\frac{1}{\rho L}$, $\alpha_k=\left(\frac{\beta}{T}\right)^{k/T}$, $r_k=\sqrt{\frac{\mu}{\rho L}}\left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k=\frac{(1-r_{k-1})\,r_{k-1}\,\alpha}{r_k+r_k^2$, $\alpha}$ converges as,

$$\mathbb{E}[f(w_{T+1}) - f^*] \leq 2c_3 \exp\left(-\frac{T}{\sqrt{\kappa\rho}} \frac{\alpha}{\ln(T/\beta)}\right) \mathbb{E}[f(w_1) - f^*] + \frac{2\sigma^2 c_3}{\rho\mu e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T},$$

where
$$c_3 = \exp\left(\frac{2\beta}{\sqrt{\rho\kappa}\ln(T/\beta)}\right)$$
.

Convergence of ASGD

Under the same assumptions as before and (iii) the growth condition on the stochastic gradients, ASGD with $w_1=y_1$, $\gamma_k=\frac{1}{\rho L}$, $\alpha_k=\left(\frac{\beta}{T}\right)^{k/T}$, $r_k=\sqrt{\frac{\mu}{\rho L}}\left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k=\frac{(1-r_{k-1})\,r_{k-1}\,\alpha}{r_k+r_{k-1}^2\,\alpha}$ converges as,

$$\mathbb{E}[f(w_{T+1}) - f^*] \leq 2c_3 \exp\left(-\frac{T}{\sqrt{\kappa\rho}} \frac{\alpha}{\ln(T/\beta)}\right) \mathbb{E}[f(w_1) - f^*] + \frac{2\sigma^2 c_3}{\rho\mu e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T},$$

where
$$c_3 = \exp\left(\frac{2\beta}{\sqrt{\rho\kappa}\ln(T/\beta)}\right)$$
.

ullet In the deterministic setting, ho=1 and $\sigma=0$, and ASGD is near-optimal.

Convergence of ASGD

Under the same assumptions as before and (iii) the growth condition on the stochastic gradients, ASGD with $w_1=y_1$, $\gamma_k=\frac{1}{\rho L}$, $\alpha_k=\left(\frac{\beta}{T}\right)^{k/T}$, $r_k=\sqrt{\frac{\mu}{\rho L}}\left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k=\frac{(1-r_{k-1})\,r_{k-1}\,\alpha}{r_k+r_{k-1}^2\,\alpha}$ converges as,

$$\mathbb{E}[f(w_{T+1}) - f^*] \leq 2c_3 \exp\left(-\frac{T}{\sqrt{\kappa\rho}} \frac{\alpha}{\ln(T/\beta)}\right) \mathbb{E}[f(w_1) - f^*] + \frac{2\sigma^2 c_3}{\rho\mu e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T},$$

where
$$c_3 = \exp\left(\frac{2\beta}{\sqrt{\rho\kappa}\ln(T/\beta)}\right)$$
.

- In the deterministic setting, $\rho = 1$ and $\sigma = 0$, and ASGD is near-optimal.
- ullet When $\sigma=0$, ASGD improves over Vaswani et al. [2019a]. and matches [Mishkin, 2020].

Convergence of ASGD

Under the same assumptions as before and (iii) the growth condition on the stochastic gradients, ASGD with $w_1=y_1$, $\gamma_k=\frac{1}{\rho L}$, $\alpha_k=\left(\frac{\beta}{T}\right)^{k/T}$, $r_k=\sqrt{\frac{\mu}{\rho L}}\left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k=\frac{(1-r_{k-1})\,r_{k-1}\,\alpha}{r_k+r_{k-1}^2\,\alpha}$ converges as,

$$\mathbb{E}[f(w_{T+1}) - f^*] \leq 2c_3 \exp\left(-\frac{T}{\sqrt{\kappa\rho}} \frac{\alpha}{\ln(T/\beta)}\right) \mathbb{E}[f(w_1) - f^*] + \frac{2\sigma^2 c_3}{\rho\mu e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T},$$

where
$$c_3 = \exp\left(\frac{2\beta}{\sqrt{\rho\kappa}\ln(T/\beta)}\right)$$
.

- In the deterministic setting, $\rho = 1$ and $\sigma = 0$, and ASGD is near-optimal.
- When $\sigma = 0$, ASGD improves over Vaswani et al. [2019a]. and matches [Mishkin, 2020].
- When $\sigma \neq 0$, Cohen et al. [2018], Vaswani et al. [2019a] use a constant step-size and prove convergence to a neighbourhood.

Convergence of ASGD

Under the same assumptions as before and (iii) the growth condition on the stochastic gradients, ASGD with $w_1=y_1$, $\gamma_k=\frac{1}{\rho L}$, $\alpha_k=\left(\frac{\beta}{T}\right)^{k/T}$, $r_k=\sqrt{\frac{\mu}{\rho L}}\left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k=\frac{(1-r_{k-1})\,r_{k-1}\,\alpha}{r_k+r_k^2+\alpha}$ converges as,

$$\mathbb{E}[f(w_{T+1}) - f^*] \leq 2c_3 \exp\left(-\frac{T}{\sqrt{\kappa\rho}} \frac{\alpha}{\ln(T/\beta)}\right) \mathbb{E}[f(w_1) - f^*] + \frac{2\sigma^2 c_3}{\rho\mu e^2} \frac{(\ln(T/\beta))^2}{\alpha^2 T},$$

where
$$c_3 = \exp\left(\frac{2\beta}{\sqrt{\rho\kappa}\ln(\tau/\beta)}\right)$$
.

- In the deterministic setting, $\rho = 1$ and $\sigma = 0$, and ASGD is near-optimal.
- When $\sigma = 0$, ASGD improves over Vaswani et al. [2019a]. and matches [Mishkin, 2020].
- When $\sigma \neq 0$, Cohen et al. [2018], Vaswani et al. [2019a] use a constant step-size and prove convergence to a neighbourhood.
- Aybat et al. [2019] use a more complicated algorithm and prove this rate when $T \geq 2\sqrt{\kappa}$.

ASGD with offline estimation of the smoothness & strong-convexity

• Assume
$$\gamma_k=\gamma=\frac{1}{\rho\tilde{L}}=\frac{\nu_L}{\rho L}$$
 and $\tilde{\mu}=\nu_\mu\mu$ where $\nu_\mu\leq 1$.

ASGD with offline estimation of the smoothness & strong-convexity

• Assume $\gamma_k = \gamma = \frac{1}{\rho \tilde{L}} = \frac{\nu_L}{\rho L}$ and $\tilde{\mu} = \nu_\mu \mu$ where $\nu_\mu \leq 1$.

Convergence of ASGD

Under the same assumptions and $\nu = \nu_L \nu_\mu \le \rho \kappa$, ASGD with $w_1 = y_1$, $\gamma_k = \frac{1}{\rho L} = \frac{\nu_L}{\rho L}$,

$$\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$$
, $\tilde{\mu} = \nu_{\mu} \mu \leq \mu$, $r_k = \sqrt{\frac{\nu}{\rho \kappa}} \left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k = \frac{(1 - r_{k-1}) \, r_{k-1} \, \alpha}{r_k + r_{k-1}^2 \, \alpha}$ converges as,

$$\begin{split} \mathbb{E}[f(w_{T+1}) - f^*] &\leq 2c_3 \exp\left(-\frac{\sqrt{\min\{\nu, 1\}}T}{\sqrt{\kappa\rho}} \frac{\alpha}{\ln(T/\beta)}\right) \mathbb{E}[f(w_1) - f^*] \\ &+ \frac{2c_3(\ln(T/\beta))^2}{e^2\alpha^2\mu T} \left[\frac{\sigma^2}{\rho} + G^2 \min\{\frac{k_0}{T}, 1\}\right] \max\{\frac{\nu_L}{\nu_\mu}, \nu_L^2\}, \end{split}$$

where
$$c_3 = \exp\left(\frac{1}{\sqrt{\rho\kappa}}\frac{2\beta}{\ln(T/\beta)}\right)$$
, $k_0 := \lfloor T\frac{[\ln(\nu_L)]_+}{\ln(T/\beta)}\rfloor$, $G = \max_{j \in [k_0]} \|\nabla f(y_j)\|$.

ASGD with offline estimation of the smoothness & strong-convexity

• Assume $\gamma_k = \gamma = \frac{1}{\rho \tilde{L}} = \frac{\nu_L}{\rho L}$ and $\tilde{\mu} = \nu_{\mu} \mu$ where $\nu_{\mu} \leq 1$.

Convergence of ASGD

Under the same assumptions and $\nu = \nu_L \nu_\mu \le \rho \kappa$, ASGD with $w_1 = y_1$, $\gamma_k = \frac{1}{\rho L} = \frac{\nu_L}{\rho L}$,

$$\alpha_k = \left(\frac{\beta}{T}\right)^{k/T}$$
, $\tilde{\mu} = \nu_\mu \mu \le \mu$, $r_k = \sqrt{\frac{\nu}{\rho \kappa}} \left(\frac{\beta}{T}\right)^{k/2T}$ and $b_k = \frac{(1 - r_{k-1}) \, r_{k-1} \, \alpha}{r_k + r_{k-1}^2 \, \alpha}$ converges as,

$$\begin{split} \mathbb{E}[f(w_{T+1}) - f^*] &\leq 2c_3 \exp\left(-\frac{\sqrt{\min\{\nu, 1\}}T}{\sqrt{\kappa\rho}} \frac{\alpha}{\ln(T/\beta)}\right) \mathbb{E}[f(w_1) - f^*] \\ &+ \frac{2c_3(\ln(T/\beta))^2}{e^2\alpha^2\mu T} \left[\frac{\sigma^2}{\rho} + G^2 \min\{\frac{k_0}{T}, 1\}\right] \max\{\frac{\nu_L}{\nu_\mu}, \nu_L^2\}, \end{split}$$

where
$$c_3 = \exp\left(\frac{1}{\sqrt{\rho\kappa}}\frac{2\beta}{\ln(T/\beta)}\right)$$
, $k_0 := \lfloor T\frac{[\ln(\nu_L)]_+}{\ln(T/\beta)}\rfloor$, $G = \max_{j \in [k_0]} \|\nabla f(y_j)\|$.

• Implies an
$$\tilde{O}\left(\exp\left(\frac{-T\sqrt{\min\{\nu,1\}}}{\sqrt{\kappa\rho}}\right) + \left[\frac{\sigma^2 + G^2[\ln(\nu_L)]_+}{T}\right]\max\{\frac{\nu_L}{\nu_\mu},\nu_L^2\}\right)$$
 rate.

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

Experimental evaluation

• Conservative decorrelated SLS: Line-search starting from γ_{k-1} (with $\gamma_0 = \gamma_{\max}$) for a random or previously sampled function (j_k) , find the largest step-size γ_k that satisfies

$$f_{j_k}(w_k - \gamma_k \nabla f_{j_k}(w_k)) \leq f_{j_k}(w_k) - c\gamma_k \|\nabla f_{j_k}(w_k)\|^2$$

Experimental evaluation

• Conservative decorrelated SLS: Line-search starting from γ_{k-1} (with $\gamma_0 = \gamma_{\text{max}}$) for a random or previously sampled function (j_k) , find the largest step-size γ_k that satisfies

$$f_{j_k}(w_k - \gamma_k \nabla f_{j_k}(w_k)) \leq f_{j_k}(w_k) - c\gamma_k \|\nabla f_{j_k}(w_k)\|^2$$

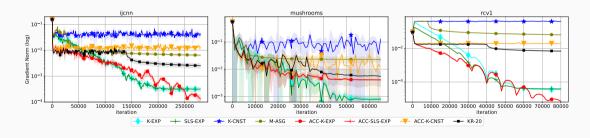


Figure 1: Regularized logistic regression

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

- Problem 1: SGD with exponential step-sizes
 - Known smoothness
 - Online estimation of unknown smoothness
 - Offline estimation of unknown smoothness
- Problem 2: Accelerated SGD with exponential step-sizes
 - Known smoothness & strong-convexity
 - Offline estimation of unknown smoothness & strong-convexity
- Experimental evaluation
- Conclusions and Future Work

Other results and Future work

- Results for strongly star-convex functions [Hinder et al., 2020].
- Effect of batch-size for all results.
- Result showing that no polynomial step-size can achieve the desired noise-adaptive rate.
- Exponential step-sizes do not seem to be noise-adaptive for convex functions (without strong-convexity) [Upper-bound]. Results showing that it is unlikely any exponential/polynomial step-size will be noise-adaptive in this case.

Other results and Future work

- Results for strongly star-convex functions [Hinder et al., 2020].
- Effect of batch-size for all results.
- Result showing that no polynomial step-size can achieve the desired noise-adaptive rate.
- Exponential step-sizes do not seem to be noise-adaptive for convex functions (without strong-convexity) [Upper-bound]. Results showing that it is unlikely any exponential/polynomial step-size will be noise-adaptive in this case.
- Algorithm without any price of misestimation.
- Step-size schemes that are noise-adaptive for convex functions.

Questions?

Paper: https://arxiv.org/abs/2110.11442

Code: https://github.com/R3za/expsls

Contact: vaswani.sharan@gmail.com

References i

- Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, and Asuman Ozdaglar. A universally optimal multistage accelerated stochastic gradient method. *Advances in neural information processing systems*, 32: 8525–8536, 2019.
- Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by interpolation. In *International Conference on Machine Learning*, pages 799–809. PMLR, 2020.
- Michael Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. On acceleration with noise-corrupted gradients. In *International Conference on Machine Learning*, pages 1019–1028. PMLR, 2018.
- John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *The Journal of Machine Learning Research*, 12:2121–2159, 2011.
- Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing star-convex functions and beyond. In *Conference on Learning Theory*, pages 1894–1938. PMLR, 2020.
- Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. arXiv preprint arXiv:2002.03329, 2020.
- Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

References ii

- Xiaoyu Li, Zhenxun Zhuang, and Francesco Orabona. A second look at exponential and cosine step sizes: Simplicity, convergence, and performance. arXiv preprint arXiv:2002.05273, 2020.
- Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak step-size for sgd: An adaptive learning rate for fast convergence. In *International Conference on Artificial Intelligence and Statistics*, pages 1306–1314. PMLR, 2021.
- Aaron Mishkin. Interpolation, growth conditions, and stochastic gradient descent. PhD thesis, University of British Columbia, 2020.
- Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. *Advances in neural information processing systems*, 24:451–459, 2011.
- Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint arXiv:1907.04232, 2019.
- Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-parameterized models and an accelerated perceptron. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1195–1204. PMLR, 2019a.

References iii

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. *Advances in neural information processing systems*, 32:3732–3745, 2019b.