Nearly Optimal Catoni's Estimator for Infinite Variance

Sujay Bhatt, Guanhua Fang, Ping Li, & Gennady Samorodnitsky

Baidu Research & Cornell University

The 39th International Conference on Machine Learning (ICML 2022)

Introduction

I.I.D r.vs $\{X_i\}_{i=1}^n$, $\mathbb{E}(X_1) = \mu$ and $\mathbb{E}|X_1 - \mu|^{1+\varepsilon} \leq v$ for $\varepsilon \in (0, 1]$.

• Catoni's M-estimator: $\hat{\mu}_n$ is a solution to the equation

$$\sum_{i=1}^{n}\psi\Big(\alpha(X_{i}-\widehat{\mu}_{n})\Big)=0$$

with $\psi : \mathbb{R} \to \mathbb{R}$ a non-decreasing influence function and $\alpha > 0$.

Key-Contribution: For a given confidence δ ∈ (0, 1), we design the tightest possible ρ = ρ(n, δ) such that P{|μ̂_n - μ| > ρ} ≤ δ.

Motivation

Sample complexity reduction in best-arm identification for heavy-tailed bandits. Independent interest.

- Catoni (2012)¹: Near-optimal sub-Gaussian estimator for finite variance!
 - Uses novel influence functions.
 - Estimator obtained as a root of quadratic polynomial.
 - New techniques needed to relax finite variance assumptions.
- Chen et.al (2021)² extend the analysis to infinite variance. Key-drawbacks:
 - Obtain large coefficients owing to loose characterization of roots of polynomial of degree < 2.
 - Minimum data requirements are not decoupled from the moment bound (v) – not suitable for online learning in bandits!

¹Catoni, O., 2012. Challenging the empirical mean. In Annales de l'IHP Probabilités et statistiques.

²Chen et. al, 2021. A generalized Catoni's M-estimator under finite α -th moment assumption with $\alpha \in (1, 2)$. Electronic Journal of Statistics.

Theorem: Confidence Interval

Let the minimum samples $n = O(\log(1/\delta)/\varepsilon\tau)$ for arbitrary $\tau > 0$. For a carefully chosen α ,

$$\left|\widehat{\mu}_n - \mu\right| < \upsilon^{1/(1+\varepsilon)} \cdot \left(\frac{\log(2/\delta)}{n}\right)^{\frac{\varepsilon}{1+\varepsilon}} \cdot G(\varepsilon, \tau)$$

Scaling of lower bound $\rightarrow G(\varepsilon, \tau)$.

- When ε = 1, G(ε, τ) ≈ (2 + γ)^{1/2} for any γ > 0. Same order and asymptotic constant as in Catoni (2012).
- When $\varepsilon < 1$, the scaling $G(\varepsilon, \tau) \approx (1 + \varepsilon)^{1/2} (1 \varepsilon)^{\frac{1}{1+\varepsilon} \frac{1}{2}}$ as $\tau \downarrow 0$. Much sharper than Chen et. al (2021).

Other extensions compared to Chen et. al (2021) include:

- Adaptation to the case of unknown moment bound $\upsilon.$ Lepski's Method for moments.
- Relaxing i.i.d. Only require $\mathbb{E}[X_{t+1}|\mathcal{F}_t] = \mu$ and $\mathbb{E}[|X_{t+1} \mu|^{1+\varepsilon}|\mathcal{F}_t] \le v_{\varepsilon}$ for any filtration \mathcal{F}_t .

Extends the scope of the results for applications!

SE-TEA (Yu et.al (2018)³). Successive Elimination with Catoni and Phase-based Elimination with Catoni $\left(O\left(\log\left(\frac{K\log(1/\Delta_i)}{\delta}\right)/\Delta_i^{1+\varepsilon/\varepsilon}\right)\right)$.

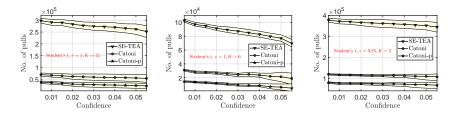


Figure: Average number of pulls for a fixed confidence over 50 iterations for different number of arms K = 2, 6, 12, and $\varepsilon = 1$ and $\varepsilon < 1$.

END

 $^{^3}$ Yu et. al., 2018. Pure exploration of multi-armed bandits with heavy-tailed payoffs. In UAI.