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Introduction

LD rvs {X;}7_;, E(X1) = p and E|X; — p*™= < v for e € (0, 1].
e Catoni's M-estimator: /i, is a solution to the equation

Zw( (X = fin)) = 0

with 1/ : R — R a non-decreasing influence function and o > 0.

e Key-Contribution: For a given confidence § € (0, 1), we design
the tightest possible 0 = o(n, d) such that ]P’{ iy — u’ > Q} <.

Motivation
Sample complexity reduction in best-arm identification for
heavy-tailed bandits. Independent interest.
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Literature & Key ldeas

e Catoni (2012)!: Near-optimal sub-Gaussian estimator for finite
variance!
® Uses novel influence functions.
® Estimator obtained as a root of quadratic polynomial.
® New techniques needed to relax finite variance assumptions.

® Chen et.al (2021)? extend the analysis to infinite variance.
Key-drawbacks:

® Obtain large coefficients owing to loose characterization of
roots of polynomial of degree < 2.

® Minimum data requirements are not decoupled from the
moment bound (v) — not suitable for online learning in bandits!

Catoni, O., 2012. Challenging the empirical mean. In Annales de I'IHP Probabilités et statistiques.

2Chen et. al, 2021. A generalized Catoni’s M-estimator under finite a-th moment assumption with o € (1, 2). Electronic
Journal of Statistics.
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Main Result

Theorem: Confidence Interval

Let the minimum samples n = O(log(1/0)/eT) for arbitrary 7 > 0.
For a carefully chosen «,

o — | < ot/ (PBRIONYTE g y

Scaling of lower bound — G(g, 7).

® When ¢ = 1, G(e,7) = (2 +7)'/? for any v > 0. Same order
and asymptotic constant as in Catoni (2012).

Nl=

® When ¢ < 1, the scaling G(g,7) ~ (1 +¢)¥?(1 — 5)i as

Tre
7 1 0. Much sharper than Chen et. al (2021).
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Main Results: Extensions

Other extensions compared to Chen et. al (2021) include:

e Adaptation to the case of unknown moment bound v. Lepski's
Method for moments.

® Relaxing i.i.d. Only require E[X; 1|F;] = i and
E[| X1 — p|*¥|F:] < v, for any filtration F,.

Extends the scope of the results for applications!
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Applications: Bandits

SE-TEA (Yu et.al (2018)3). Successive Elimination with Catoni and
Phase-based Elimination with Catoni (O(log (%)/A}“/E)).
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Figure: Average number of pulls for a fixed confidence over 50 iterations
for different number of arms K =2,6,12, ande =1 and ¢ < 1.

3Yu et. al., 2018. Pure exploration of multi-armed bandits with heavy-tailed payoffs. In UAI.
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