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Introduction

I.I.D r.vs {Xi}n
i=1, E(X1) = µ and E|X1 − µ|1+ε ≤ υ for ε ∈ (0, 1].

• Catoni’s M-estimator: µ̂n is a solution to the equation
n∑

i=1
ψ

(
α(Xi − µ̂n)

)
= 0

with ψ : R → R a non-decreasing influence function and α > 0.
• Key-Contribution: For a given confidence δ ∈ (0, 1), we design

the tightest possible ϱ = ϱ(n, δ) such that P
{∣∣∣∣µ̂n − µ

∣∣∣∣ > ϱ
}

≤ δ.

Motivation
Sample complexity reduction in best-arm identification for
heavy-tailed bandits. Independent interest.
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Literature & Key Ideas

• Catoni (2012)1: Near-optimal sub-Gaussian estimator for finite
variance!

• Uses novel influence functions.
• Estimator obtained as a root of quadratic polynomial.
• New techniques needed to relax finite variance assumptions.

• Chen et.al (2021)2 extend the analysis to infinite variance.
Key-drawbacks:

• Obtain large coefficients owing to loose characterization of
roots of polynomial of degree < 2.

• Minimum data requirements are not decoupled from the
moment bound (υ) – not suitable for online learning in bandits!

1Catoni, O., 2012. Challenging the empirical mean. In Annales de l’IHP Probabilités et statistiques.
2Chen et. al, 2021. A generalized Catoni’s M-estimator under finite α-th moment assumption with α ∈ (1, 2). Electronic

Journal of Statistics.
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Main Result

Theorem: Confidence Interval
Let the minimum samples n = O(log(1/δ)/ετ) for arbitrary τ > 0.
For a carefully chosen α,∣∣∣∣µ̂n − µ

∣∣∣∣ < υ1/(1+ε) ·
( log(2/δ)

n

) ε
1+ε

· G(ε, τ)

Scaling of lower bound → G(ε, τ).
• When ε = 1, G(ε, τ) ≈ (2 + γ)1/2 for any γ > 0. Same order

and asymptotic constant as in Catoni (2012).
• When ε < 1, the scaling G(ε, τ) ≈ (1 + ε)1/2(1 − ε) 1

1+ε
− 1

2 as
τ ↓ 0. Much sharper than Chen et. al (2021).
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Main Results: Extensions

Other extensions compared to Chen et. al (2021) include:
• Adaptation to the case of unknown moment bound υ. Lepski’s

Method for moments.
• Relaxing i.i.d. Only require E[Xt+1|Ft ] = µ and
E[|Xt+1 − µ|1+ε|Ft ] ≤ υε for any filtration Ft .

Extends the scope of the results for applications!
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Applications: Bandits

SE-TEA (Yu et.al (2018)3). Successive Elimination with Catoni and
Phase-based Elimination with Catoni (O(log

(
K log(1/∆i )

δ

)
/∆1+ε/ε

i )).
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Figure: Average number of pulls for a fixed confidence over 50 iterations
for different number of arms K = 2, 6, 12, and ε = 1 and ε < 1.

***END***
3Yu et. al., 2018. Pure exploration of multi-armed bandits with heavy-tailed payoffs. In UAI.
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