Delay-adaptive Step-sizes for Asynchronous Learning

Xuyang Wul, Sindri Magnusson2, Hamid Reza Feyzmahdavian3,

Mikael Johansson!
1KTH Royal Institute of Technology

2Stockholm University
3ABB Corporate Research

ICML 2022

Synchronous and Asynchronous in Distributed Learning

.
8

worker 1

.
-8

worker n

master
‘!

/|

Large sample number/model
dimension — use of multiple
processors

synchronous: all finish comp & comm,
next iteration.

> GD: pyr =ap— L300 Vi (ap).
inefficient, bottleneck: slowest worker.

asynchronous: some finish comp &
comm, next iteration, cause delay.

> IAG: 4
T =Tk — 3 2oy VI (@hrp).

efficient, do not wait slowest.

Literature Review, Issues, and ldea

» asynchronous, non-diminishing step-size:
— rely on an upper bound 7 of all delays.
— lIssues: 7 usually unknown (hard to implement) or large (small
step-size, slow convergence)

» ldea: step-sizes should rely on actual delays. Poses two questions:
1. can we measure actual delay? (yes, measured by difference of
iteration index)
2. large gap between delay bound and actual delay? (yes)

Gap between delay bound and actual delay

T: maximal information delay at iteration k.

02
0.1 { . J
0

0 10 19
7 (RCV1)

27

o

frequency

o o

o S i

NE
8

10
7 (MNIST)

e o
o =

10 20 28
7 (CIFAR100)

o

Figure: Real-world delay distribution (8 workers)

most delays are much smaller than maximal delay, good to use actual

delay

Main part: delay-adaptive step-sizes for two
asynchronous methods

Problem and Algorithm

min f(z) + R(x)
T —— N~
smooth loss convex regularizer

e large sample number: f(z):= L 3" | fi(x)

= PIAG: zj41 = prox,, p(zr — £ 370, Vfi(mk)—Tli))'
proxp(z) = arg min, R(y) + 3y — 2|1

e large variable dimension: z = (z',...,2™), R(z) = Y.~ R'(z").

— Async-BCD: x;’grl = Prox,, pix (2 — Vi f(Tr—r,))

number of blocks and workers can be different.

Convergence Analysis

k—1
step-size principal: v, < max(0,v" — Z Vi) (1)
t=k—71
> PIAG: O(srtr—), proximal-PL: O(e” 3iZo),
t=0
» Async-BCD: O(—=—— 1)
Xizo
larger step-size integral Zf:_ol v+ — faster convergence
Adaptive 1: for a € (0,1], Adaptive 2:
- e <,Y_Ztk‘rk’yt7

_ Ve = TRTY moT <
Yk = amaX{’y Zt k—ry, Tt } {O, otherwise.

satisfy (1), easy to implement, bounded delay — sublinear and linear

Comparison with Fixed Step-size

> worst case:

Adaptive 1: Zi:ol Y=k % Adaptive 2: Zt 0 >k

bounded delay (7, < 7), sota fixed:

e
T+1°

k

(a) constant delay

(b) random delay

(T+1)2
> on delay models:
delay delay delay
T 7 T
0 0
k k k
step-size integral step-size integral step-size integral
Adaptive 1
- Adaptive 2 -
© |= == eFixed <
A A

(c) burst delay

Experiment: Logistic Regression

» problem: min % >N (log(l + e*bi(a?z)) + %||x“2> + A1 |z]|1
» for both algorithms, 8 workers, 10-core machine, 3 datasets, MPl4py.

objective value

— Adaptive 1

—— Adaptive 2
. -=-=- Fixed (Sun, Deng)

objective value

8 —— Adaptive 1
. —— Adaptive 2
™ =---- Fixed (Sun,

Deng)

— Adaptive 1
o —— Adaptive 2
=== Fixed (Sun, Deng)

500
iteration number

(a) RCV1

Figure:

500 1000
iteration number

(b) MNIST

Convergence of PIAG

1500

500
iteration number

(c) CIFAR100

Experiment

Logistic Regression

—— Adaptive 1
—— Adaptive 2

77777 Fixed (Sun)
== Fixed (Davis)

—— Adaptive 1
—— Adaptive 2
————— Fixed (Sun)

=== Fixed (Davis)

0 1000
iteration number

(a) RCV1

Figure: Convergence of Async-BCD

1000 20
iteration number

(c) CIFAR100

Conclusion

» delay-adaptive step-size
— is implementable (delay-tracking is easy)
— can significantly accelerate algorithms (validated by theory and
experiment).

» the idea of delay-adaptive parameter selection is general, applicable
to other asynchronous methods

11

