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Synchronous and Asynchronous in Distributed Learning
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Large sample number/model
dimension — use of multiple
processors

synchronous: all finish comp & comm,
next iteration.

> GD: pyr =ap— L300 Vi (ap).
inefficient, bottleneck: slowest worker.

asynchronous: some finish comp &
comm, next iteration, cause delay.

> IAG: 4
T =Tk — 3 2oy VI (@hrp).

efficient, do not wait slowest.



Literature Review, Issues, and ldea

» asynchronous, non-diminishing step-size:
— rely on an upper bound 7 of all delays.
— lIssues: 7 usually unknown (hard to implement) or large (small
step-size, slow convergence)

» ldea: step-sizes should rely on actual delays. Poses two questions:
1. can we measure actual delay? (yes, measured by difference of
iteration index)
2. large gap between delay bound and actual delay? (yes)



Gap between delay bound and actual delay

T: maximal information delay at iteration k.
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Figure: Real-world delay distribution (8 workers)

most delays are much smaller than maximal delay, good to use actual

delay



Main part: delay-adaptive step-sizes for two
asynchronous methods



Problem and Algorithm

min  f(z) + R(x)
T —— N~
smooth loss  convex regularizer

e large sample number: f(z):= L 3" | fi(x)

= PIAG: zj41 = prox,, p(zr — £ 370, Vfi(mk)—Tli))'
proxp(z) = arg min, R(y) + 3y — 2|1

e large variable dimension: z = (z',...,2™), R(z) = Y.~ R'(z").

— Async-BCD: x;’grl = Prox,, pix (2 — Vi f(Tr—r,))

number of blocks and workers can be different.



Convergence Analysis

k—1
step-size principal: v, < max(0,v" — Z Vi) (1)
t=k—71
> PIAG: O(srtr—), proximal-PL: O(e” 3iZo ),
t=0
» Async-BCD: O(—=—— 1 )
Xizo
larger step-size integral Zf:_ol v+ — faster convergence
Adaptive 1: for a € (0,1], Adaptive 2:
- e <,Y_Ztk‘rk’yt7

_ Ve = TRTY moT <
Yk = amaX{’y Zt k—ry, Tt } {O, otherwise.

satisfy (1), easy to implement, bounded delay — sublinear and linear



Comparison with Fixed Step-size

> worst case:

Adaptive 1: Zi:ol Y=k % Adaptive 2: Zt 0 >k

bounded delay (7, < 7), sota fixed:
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Experiment: Logistic Regression

» problem: min % >N (log(l + e*bi(a?z)) + %||x“2> + A1 |z]|1
» for both algorithms, 8 workers, 10-core machine, 3 datasets, MPl4py.
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Experiment

Logistic Regression
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Conclusion

» delay-adaptive step-size
— is implementable (delay-tracking is easy)
— can significantly accelerate algorithms (validated by theory and
experiment).

» the idea of delay-adaptive parameter selection is general, applicable
to other asynchronous methods
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