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Stochastic Hamiltonian Monte Carlo

• Given dataset D = {xi}N
i=1, sample from p(θ|D) ∝ exp(−U(θ))

− U(θ) =
N∑

i=1
log p(xi |θ) + log p(θ)

Hamiltonian Stochastic Differential Equation with friction term C :

dθt = rtdt, drt = −∇θU(θt)dt − Crtdt +
√

2Cdwt
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Mini-batches and Bottleneck

• Mini-batches D1, . . . ,DK , decomposition L = L1 + · · ·+ LK

• Order-p operators:

Ui = exp(ηKLi ) +O(ηp+1)

• Permutations π1, . . .πK !,
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Expected operator:

U = 1
K !

K !∑
i=1
Uπi

K
Uπi

K−1
. . .Uπi

1
= exp (ηKL) +O(Kη3) +O(Kηp+1)

Theorem
The ergodic error has expansion

e(ψ, φ) = O
(
ηmin (p,2)

) • Integrators of order p > 2 are not
beneficial, when mini-batches are used.

3 / 5



Mini-batches and Bottleneck – Empirical Results
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A Connection between HMC and the Lie-Trotter Integrator

HMC (partial momentum refreshment α > 0)

θ1, r ∗ = ψ(. . . ψ(ψ(︸ ︷︷ ︸
Nl times

θ0, r 0))), r 1 = αr ∗ +
√

1− α2w

• For α = exp−ηNl C and Nl = 1: recover the Lie-Trotter SDE integrator
• Convergence rate: mini-batch bottleneck, rate independent on Nl .
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Thank you!
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Abstract

We revisit the theoretical properties of Hamilto-
nian stochastic differential equations (SDEs) for
Bayesian posterior sampling, and we study the
two types of errors that arise from numerical SDE
simulation: the discretization error and the er-
ror due to noisy gradient estimates in the context
of data subsampling. Our main result is a novel
analysis for the effect of mini-batches through
the lens of differential operator splitting, revising
previous literature results. The stochastic compo-
nent of a Hamiltonian SDE is decoupled from the
gradient noise, for which we make no normality
assumptions. This leads to the identification of a
convergence bottleneck: when considering mini-
batches, the best achievable error rate is O(η2),
with η being the integrator step size. Our theoreti-
cal results are supported by an empirical study on
a variety of regression and classification tasks for
Bayesian neural networks.

1. Introduction
Hamiltonian Monte Carlo (HMC) is a popular approach to
obtain samples from intractable distributions (Neal, 1996;
2011; Hoffman & Gelman, 2014). It presents, however,
significant computational challenges for large datasets, as it
requires access to the full gradient of the associated Hamil-
tonian system. Stochastic-Gradient HMC (SGHMC) (Chen
et al., 2014) was proposed as a scalable alternative to HMC,
by admitting noisy estimates of the gradient using mini-
batching. A complementary family of techniques relies on
pseudo-marginal techniques to achieve scalability (Alenlöv
et al., 2021). In SGHMC, the Hamiltonian dynamics is mod-
ified so as to include a friction term that counteracts the
effects of the gradient noise. This approach has proven effec-
tive in dealing with the difficulties in sampling from the pos-
terior distribution over model parameters of Bayesian Neu-
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ral/Convolutional Networks (BNNs) (Wenzel et al., 2020;
Tran et al., 2022).

Stochastic gradient (SG) methods have been extensively
studied as a means for Markov chain Monte Carlo (MCMC)-
based algorithms to scale to large data. Variants of SG-
MCMC algorithms have been studied through the lenses
of first (Welling & Teh, 2011; Ahn et al., 2012; Patter-
son & Teh, 2013) or second-order (Chen et al., 2014; Ma
et al., 2015) Langevin dynamics; these are mathematically
convenient continuous-time processes which correspond to
discrete-time gradient methods with and without momen-
tum, respectively. Langevin dynamics are formally captured
by an appropriate set of stochastic differential equations
(SDEs), whose theoretical properties have been extensively
studied (Kloeden & Platen, 1995; Debussche & Faou, 2012)
with a particular emphasis on the stationary property of
these processes (Abdulle et al., 2014; Milstein & Tretyakov,
2007). As in Abdulle et al. (2014; 2015), we are interested
in the asymptotic (in time) performance of such sampling
schemes. The reader is referred to Vollmer et al. (2016); Gao
et al. (2018; 2020); Futami et al. (2020); Xu et al. (2018)
for additional insights into the non-asymptotic behavior of
these methods.

In this work, we seek to re-evaluate the connections between
SG and stochastic Hamiltonian dynamics (known as second
order or underdamped Langevin dynamics) with the aim
of improving our current understanding of the goodness of
sampling from intractable distributions when considering
mini-batching. We consider a system with potential U(θ)
which is the negative of the logarithm of the density function
associated with the distribution we aim to sample from. We
introduce position variables θ ∈ Rd (i.e., parameters) and
momentum variables r ∈ Rd obeying the following SDE:

dr(t) = −∇θU(θ(t))dt− CM−1r(t)dt+
√

2Cdw(t)

dθ(t) = M−1r(t)dt.

(1)

This is an extension of an Hamiltonian system with a friction
term and an appropriately scaled Brownian motion w(t),
where C > 01 and M is a symmetric, positive definite
matrix (a.k.a. mass matrix). A common assumption in the

1Here for simplicity we consider C ∈ R, but in general C can
be a matrix.

And for any questions, please feel free to contact any of the Authors.
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