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Stochastic Hamiltonian Monte Carlo

® Given dataset D = {x;};, sample from p(8|D) o exp(—U(0))

N
— U(8) = _ log p(xi|6) + log p(8)
i=1

Hamiltonian Stochastic Differential Equation with friction term C:

det = rtdt, drt = —Vg U(Ot)dt - Crtdt =+ v 2Cth

SDE sample paths

6,
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Mini-batches and Bottleneck

® Mini-batches Dy, ..., Dk, decomposition £L = Ly + --- + Lk

10!

L Order—p operators: 1072 A
41 L 10754
. — . P [7)
ul - eXP(nKEI) + O(T, ) 10784 =~ Random permutations
3
® Permutations 7!, ... 7K' 104 1 — Average Operator

—— Back and Forth Operator

102 102 10
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U=— E Uiy .. .Uy = exp(nKL) + O(Kn?) + O(KnPth)
Kl — K Tk-1 1

Theorem
The ergodic error has expansion

(1, 0) = O (™)

® |ntegrators of order p > 2 are not
beneficial, when mini-batches are used.
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Mini-batches and Bottleneck — Empirical Results

Synthetic dataset (regression) - Random trigonometric features (256)
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Boston housing dataset (regression) - BNN: 50 ReLU nodes, 4 layers
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A Connection between HMC and the Lie-Trotter Integrator

HMC (partial momentum refreshment o > 0)

0, r* = (... h((6°, r°))), rr=ar* +1- 2w
—_———

N, times

® For a = exp ™€ and N; = 1: recover the Lie-Trotter SDE integrator
® Convergence rate: mini-batch bottleneck, rate independent on N,.

Boston housing dataset (regression) - BNN: 50 ReLU nodes, 4 layers
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Thank you!

Revisiting the Effects of Stochasticity for Hamiltonian Samplers

Giulio Franzese ' Dimitrios Milios '

Abstract

‘We revisit the theoretical properties of Hamilto-
nian stochastic differential equations (SDEs) for
Bayesian posterior sampling, and we study the
two types of errors that arise from numerical SDE
simulation: the discretization error and the er-
ror due to noisy gradient estimates in the context
of data subsampling. Our main result is a novel
analysis for the effect of mini-batches through
the lens of differential operator splitting, revising
previous literature results. The s compo-
nent of a Hamiltonian SDE is decnupled from the
gradient noise, for which we make no normality

And for any questions, please feel free to contact any of the Authors.

Maurizio Filippone ' Pietro Michiardi '

ral/Convolutional Networks (BNNs) (Wenzel et al., 2020;
Tran et al., 2022).

Stochastic gradient (SG) methods have been extensively
studied as a means for Markov chain Monte Carlo (MCMC)-
based algorithms to scale to large data. Variants of SG-
MCMC algorithms have been studied through the lenses
of first (Welling & Teh, 2011; Ahn et al., 2012; Patter-
son & Teh, 2013) or second-order (Chen et al., 2014; Ma
etal., 2015) Langevin dynamics; these are mathematically
convenient continuous-time processes which correspond to
discrete-time gradient methods with and without momen-
tum, respectively. Langevin dynami re formally captured
by an appropriate set of stochastic differential equations
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