Robustness Implies Generalization via Data-Dependent Generalization Bounds

Zhun Deng*

Harvard University

* Joining Columbia University in fall as a postdoc.

Collaborators

Kenji Kawaguchi
Kyle Luh
Jiaoyang Huang

New Generalization Bounds are Needed in Modern Learning

Mysteries of Modern Machine Learning

Neural networks:
Severely over-parameterized.
Still generalize well?!

Mysteries of Modern Machine Learning

Mysteries of Modern Machine Learning

Traditional generalization bounds can no longer work!

Mysteries of Modern Machine Learning

Algorithm

Three keys to demystify - "Understanding Deep Learning is Also a Job for Physicists" by Lenka Zdeborová

Data-dependent Generalization
 Bounds are Essential in Modern
 Learning

Modern Dataset Structure

K is a partition of input space of real data sets; $\left|\mathcal{T}_{S}\right|$ is the number of partitions with non-zero data points.

Popolar modern datasets are very sparse! Actually, the datasets are spares after projection, so they live on low dimensional manifolds.

Modern Dataset Structure

2-D visualization of Cifar-10's representation embeddings after projection.

Traditional Generalization Bounds

Rademacher complexity bounds (Bartlett \& Mendelson, 2002)
Uniform stability bounds (Bousquet \& Elisseef, 2002)
Robust generalization bounds (Xu \& Mannor, 2012)
All those bounds cannot directly take advantage of the input data structure!

Robust Generalization Bounds

Definition ($(K, \epsilon(\cdot))$-robust)

1. Algorithm $\mathcal{A}: \mathcal{Z}^{n} \rightarrow \mathbb{R}$;
2. The input space \mathcal{Z} can be partitioned into K disjoint sets $\left\{\mathcal{C}_{k}\right\}_{k=1}^{K}$;
3. if $s, z \in \mathcal{C}_{k}$, then $\left|\ell\left(\mathcal{A}_{S}, s\right)-\ell\left(\mathcal{A}_{S}, z\right)\right| \leq \epsilon(S)$.

Robust Generalization Bounds

Proposition (Xu \& Mannor, 2012)

1. $\ell(h, z) \leq B$;
2. \mathcal{A} is $(K, \epsilon(\cdot))$-robust (with $\left\{\mathcal{C}_{k}\right\}_{k=1}^{K}$);
with probability at least $1-\delta$,

$$
\mathbb{E}_{z}\left[\ell\left(\mathcal{A}_{S}, z\right)\right] \leq \frac{1}{n} \sum_{i=1}^{n} \ell\left(\mathcal{A}_{S}, z_{i}\right)+\epsilon(S)+B \sqrt{\frac{2 K \ln 2+2 \ln (1 / \delta)}{n}}
$$

Why Robust Generalization Bounds?

Example (Xu \& Mannor, 2012 (Lasso))

\mathcal{Z} is compact, and loss function $\ell\left(\mathcal{A}_{S}, z\right)=\left|z^{(y)}-\mathcal{A}_{S}\left(z^{(x)}\right)\right|$.
Lasso can be formulated as:

$$
\underset{w}{\operatorname{minimize}}: \frac{1}{n} \sum_{i=1}^{n}\left(s_{i}^{(y)}-w^{\top} s_{i}^{(x)}\right)^{2}+c\|w\|_{1} .
$$

This algorithm is $\left(\mathcal{N}\left(\nu / 2, \mathcal{Z},\|\cdot\|_{\infty}\right), \nu\left(\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}^{(y)}\right)^{2}\right) / c\right.$ $+\nu)$-robust for all $\nu>0$.

Why Robust Generalization Bounds?

Example (Xu \& Mannor, 2012 (PCA))

For $\mathcal{Z} \subset \mathbb{R}^{m}$, a set with the maximum ℓ_{2} norm bounded by B, with loss function

$$
\ell\left(\left(w_{1}, \ldots, w_{d}\right), z\right)=\sum_{j=1}^{d}\left(w_{j}^{\top} z\right)^{2}
$$

then finding the first d principal components via the optimization problem:

$$
\text { Maximize: } \sum_{i=1}^{n} \sum_{j=1}^{d}\left(w_{j}^{\top} s_{i}\right)^{2}
$$

with the constraint that $\left\|w_{j}\right\|_{2}=1$ and $w_{i}^{\top} w_{j}=0$ for $i \neq j$ is $\left(\mathcal{N}\left(\gamma / 2, \mathcal{Z},\|\cdot\|_{2}\right), 2 d \gamma B\right)$-robust, for all $\gamma>0$.

Our Bounds

Theorem

1. $\ell(h, z) \leq B$;
2. \mathcal{A} is $(K, \epsilon(\cdot))$-robust (with $\left\{\mathcal{C}_{k}\right\}_{k=1}^{K}$);
with probability at least $1-\delta$, the following holds:

$$
\begin{aligned}
& \mathbb{E}_{z}\left[\ell\left(\mathcal{A}_{S}, z\right)\right] \leq \frac{1}{n} \sum_{i=1}^{n} \ell\left(\mathcal{A}_{S}, z_{i}\right)+\epsilon(S) \\
& +\zeta\left(\mathcal{A}_{S}\right)\left((\sqrt{2}+1) \sqrt{\frac{\left|\mathcal{T}_{S}\right| \ln (2 K / \delta)}{n}}+\frac{2\left|\mathcal{T}_{S}\right| \ln (2 K / \delta)}{n}\right)
\end{aligned}
$$

where $\mathcal{I}_{k}^{S}:=\left\{i \in[n]: z_{i} \in \mathcal{C}_{k}\right\}, \zeta\left(\mathcal{A}_{S}\right):=\max _{z \in \mathcal{Z}}\left\{\ell\left(\mathcal{A}_{S}, z\right)\right\}$, and $\mathcal{T}_{S}:=\left\{k \in[K]:\left|\mathcal{I}_{k}^{S}\right| \geq 1\right\}$.

Comparisons

1. (Xu \& Mannor, 2012) $B \sqrt{\frac{2 K \ln 2+2 \ln (1 / \delta)}{n}}$
2. (Ours) $\zeta\left(\mathcal{A}_{S}\right)\left((\sqrt{2}+1) \sqrt{\frac{\left|\mathcal{T}_{S}\right| \ln (2 K / \delta)}{n}}+\frac{2\left|\mathcal{T}_{S}\right| \ln (2 K / \delta)}{n}\right)$
where $\mathcal{I}_{k}^{S}:=\left\{i \in[n]: z_{i} \in \mathcal{C}_{k}\right\}, \zeta\left(\mathcal{A}_{S}\right):=\max _{z \in \mathcal{Z}}\left\{\ell\left(\mathcal{A}_{S}, z\right)\right\}$, and $\mathcal{T}_{S}:=\left\{k \in[K]:\left|\mathcal{I}_{k}^{S}\right| \geq 1\right\}$.

Comparisons

1. (Xu \& Mannor, 2012) $B \sqrt{\frac{2 K \ln 2+2 \ln (1 / \delta)}{n}}$
2. (Ours) $\zeta\left(\mathcal{A}_{S}\right)\left((\sqrt{2}+1) \sqrt{\frac{\left|\mathcal{T}_{S}\right| \ln (2 K / \delta)}{n}}+\frac{2\left|\mathcal{T}_{S}\right| \ln (2 K / \delta)}{n}\right)$

$$
\text { where } \mathcal{I}_{k}^{S}:=\left\{i \in[n]: z_{i} \in \mathcal{C}_{k}\right\}, \zeta\left(\mathcal{A}_{S}\right):=\max _{z \in \mathcal{Z}}\left\{\ell\left(\mathcal{A}_{S}, z\right)\right\} \text {, and }
$$ $\mathcal{T}_{S}:=\left\{k \in[K]:\left|\mathcal{I}_{k}^{S}\right| \geq 1\right\}$.

$$
K \text { v.s. }\left|\mathcal{T}_{S}\right|
$$

Comparisons

Figure 3. The values of K versus $\left|\mathcal{T}_{S}\right|$ with real-world data and the ϵ-covering. The values of $\left|\mathcal{T}_{S}\right|$ are extremely small compared to those of K in all datasets.

Figure 4. The values of K versus $\left|\mathcal{T}_{S}\right|$ with real-world data and the clustering using unlabeled data. With clustering to reduce K, we still have $\left|\mathcal{T}_{S}\right|<K$. Here, $\left|\mathcal{T}_{S}\right|$ was close to zero for Semeion.

Figure 5. The values of K versus $\left|\mathcal{T}_{S}\right|$ with real-world data and random projection. With random projection to reduce K, we still have $\left|\mathcal{T}_{S}\right|<30<K=100<n \approx 60,000$ for the real-life datasets. Here, n is the full train data size of each dataset: e.g., $n=60,000$ for MNIST.

$$
K \gg\left|\mathcal{T}_{s}\right|
$$

Theoretical Comparisons

Proposition

1. $p_{k}=\mathbb{P}\left(z \in \mathcal{C}_{k}\right)$ where $p_{1} \geq p_{2} \geq \cdots \geq p_{K}$;
2. p_{k} decays as $p_{k} \leq C e^{-(k / \beta)^{\alpha}}$;
with probability at least $1-\delta$,

$$
\left|\mathcal{T}_{S}\right| \leq \beta(\ln n)^{1 / \alpha}+C(e-1) \frac{\beta}{\alpha}+\log (1 / \delta)
$$

Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is $\left(\mathcal{N}\left(\nu / 2, \mathcal{Z},\|\cdot\|_{\infty}\right), \nu\left(\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}^{(y)}\right)^{2}\right) / c+\right.$ $\nu)$-robust for all $\nu>0$.
2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^{d}$. Given any $\nu>0$, let z follow a distribution \mathcal{D}_{z}, such that $z^{(x)}=\left(x^{(1)^{\top}}, x^{(2)^{\top}}\right)^{\top}$, where $\left.x^{(1)} \sim N\left(0, I_{p}\right)\right|_{[-1,1]^{p} .} .\left.x^{(2)} \sim N\left(\mu, \sigma^{2} I_{r}\right)\right|_{[-1,1]^{r}}$, and $r=d-p, z^{(y)}=w^{* \top} z^{(x)}$, where $\left\|w^{*}\right\|_{1} \leq 1$.

Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is $\left(\mathcal{N}\left(\nu / 2, \mathcal{Z},\|\cdot\|_{\infty}\right), \nu\left(\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}^{(y)}\right)^{2}\right) / c+\right.$ ν)-robust for all $\nu>0$.
2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^{d}$. Given any $\nu>0$, let z follow a distribution \mathcal{D}_{z}, such that $z^{(x)}=\left(x^{(1)^{\top}}, x^{(2)^{\top}}\right)^{\top}$, where $\left.x^{(1)} \sim N\left(0, I_{p}\right)\right|_{[-1,1]^{p} .} .\left.x^{(2)} \sim N\left(\mu, \sigma^{2} I_{r}\right)\right|_{[-1,1]^{r}}$, and $r=d-p, z^{(y)}=w^{* \top} z^{(x)}$, where $\left\|w^{*}\right\|_{1} \leq 1$.

Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is $\left(\mathcal{N}\left(\nu / 2, \mathcal{Z},\|\cdot\|_{\infty}\right), \nu\left(\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}^{(y)}\right)^{2}\right) / c+\right.$ ν)-robust for all $\nu>0$.
2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^{d}$. Given any $\nu^{\prime}>0$, let z follow a distribution \mathcal{D}_{z}, such that $z^{(x)}=\left(x^{(1)^{\top}}, x^{(2)^{\top}}\right)^{\top}$, where $\left.x^{(1)} \sim N\left(0, I_{p}\right)\right|_{[-1,1]^{p} .} .\left.x^{(2)} \sim N\left(\mu, \sigma^{2} I_{r}\right)\right|_{[-1,1]^{r}}$, and $r=d-p, z^{(y)}=w^{* \top} z^{(x)}$, where $\left\|w^{*}\right\|_{1} \leq 1$.

Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is $\left(\mathcal{N}\left(\nu / 2, \mathcal{Z},\|\cdot\|_{\infty}\right), \nu\left(\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}^{(y)}\right)^{2}\right) / c+\right.$ ν)-robust for all $\nu>0$.
2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^{d}$. Given any $\nu>0$, let z follow a distribution \mathcal{D}_{z}, such that $z^{(x)}=\left(x^{(1)^{\top}}, x^{(2)^{\top}}\right)^{\top}$, where $\left.x^{(1)} \sim N\left(0, I_{p}\right)\right|_{[-1,1]^{p} .} .\left.x^{(2)} \sim N\left(\mu, \sigma^{2} I_{r}\right)\right|_{[-1,1]^{r}}$, and $r=d-p, z^{(y)}=w^{* \top} z^{(x)}$, where $\left\|w^{*}\right\|_{1} \leq 1$.

There exists parameters such that our bound is much tighter than that in Proposition in Xu \& Mannor as

$$
\left|\mathcal{T}_{\mathcal{S}}\right|=\Theta\left((2 / \nu)^{p+1}\right) \ll \Theta\left((2 / \nu)^{d+1}\right)=\mathcal{N}\left(\nu / 2, \mathcal{Z},\|\cdot\|_{\infty}\right)
$$

Algorithmic Stability

Algorithmic Stability

Training sample: \mathcal{S}.

Algorithmic Stability

Training sample: \mathcal{S}.
A learning algorithm $\mathscr{A}: \mathcal{Z}^{m} \rightarrow \mathcal{F}$ outputs a function $\mathcal{A}_{S} \in \mathcal{F}$.

Algorithmic Stability

Training sample: \mathcal{S}.
A learning algorithm $\mathscr{A}: \mathcal{Z}^{m} \rightarrow \mathcal{F}$ outputs a function $\mathcal{A}_{S} \in \mathcal{F}$.

Definition (Uniform Stability(Bousquet \& Elisseeff, 2002))
An algorithm \mathscr{A} has uniform stability β_{m}^{U} with respect to the loss function / if

$$
\left|I\left(\mathcal{A}_{S}, z\right)-I\left(\mathcal{A}_{S \backslash i}, z\right)\right| \leq \beta_{m}^{U}
$$

holds for all $S \in \mathcal{Z}^{m}, 1 \leq i \leq m$, and $z \in \mathcal{Z}$.

Theoretical Comparisons with Uniform Stability

Example (Regularized least square regression)

1. Let $z^{(y)} \in[0, B]$ and $z^{(x)} \in[0,1]$. The regularized least squares regression is defined as $\mathcal{A}_{S}=\operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} \ell\left(w, z_{i}\right)+\lambda|w|^{2}$, where $\ell(w, z)=\left(w \cdot z^{(x)}-z^{(y)}\right)^{2}$ and $w \in \mathbb{R}$.
2. Uniform stability: $\beta \leq \frac{2 B^{2}}{\lambda n}$.
3. Consider $z: z^{(y)}=w^{*} \cdot z^{(x)}+\epsilon \mathbf{1}(|\epsilon|<B)$. In addition, $z^{(x)}$ follows a continuous distribution on $[0,1]$.

With a probability of at least $1-\delta,\left|\mathcal{T}_{S}\right|=\Theta(2 \nu)$. Thus, if $B^{2} / \lambda \gg 2 / \nu$, then our bound is a far more precise bound than that obtained via uniform stability.

New Techniques

The key technical hurdle: to avoid an explicit \sqrt{K} dependence for the following form:

$$
\sum_{i=1}^{K} a_{i}(X)\left(p_{i}-\frac{X_{i}}{n}\right),
$$

where a_{i} is an arbitrary function with $a_{i}(X) \geq 0$ for all
$i \in\{1, \ldots, K\}$.

New Techniques

Lemma

For any $\delta>0$, with probability at least $1-\delta$,

$$
\sum_{i=1}^{K} a_{i}(X)\left(p_{i}-\frac{X_{i}}{n}\right) \leq\left(\sum_{i=1}^{K} a_{i}(X) \sqrt{p_{i}}\right) \sqrt{\frac{2 \ln (K / \delta)}{n}}
$$

1. Lemma holds with $a_{i}(X)=\operatorname{sign}\left(p_{i}-\frac{X_{i}}{n}\right)$, where $\operatorname{sign}(q)$ is the sign of q.
2. If $p_{i}=1 / K$, recovers Bretagnolle-Huber-Carol inequality.
3. $p_{1} \approx 1$, other p_{i} 's are ≈ 0, then $\sum \sqrt{p_{i}} \approx 1$.

New Techniques

Lemma

For any $\delta>0$, with probability at least $1-\delta$,

$$
\sum_{i=1}^{K} a_{i}(X)\left(p_{i}-\frac{X_{i}}{n}\right) \leq\left(\sum_{i=1}^{K} a_{i}(X) \sqrt{p_{i}}\right) \sqrt{\frac{2 \ln (K / \delta)}{n}}
$$

1. Lemma holds with $a_{i}(X)=\operatorname{sign}\left(p_{i}-\frac{X_{i}}{n}\right)$, where $\operatorname{sign}(q)$ is the sign of q.
2. If $p_{i}=1 / K$, recovers Bretagnolle-Huber-Carol inequality.
3. $p_{1} \approx 1$, other p_{i} 's are ≈ 0, then $\sum \sqrt{p_{i}} \approx 1$.

Our result interpolates between these cases!

End

Thanks for listening!

