

Harvard John A. Paulson School of Engineering and Applied Sciences

Robustness Implies Generalization via Data-Dependent Generalization Bounds

Zhun Deng* Harvard University

* Joining Columbia University in fall as a postdoc.

Kenji Kawaguchi Kyle Luh Jiaoyang Huang

New Generalization Bounds are Needed in Modern Learning

Neural networks:

Severely over-parameterized. Still generalize well?!

Traditional generalization bounds can no longer work!

Three keys to demystify — "Understanding Deep Learning is Also a Job for Physicists" by Lenka Zdeborová

Data-dependent Generalization Bounds are Essential in Modern Learning

Modern Dataset Structure

K is a partition of input space of real data sets; $|\mathcal{T}_S|$ is the number of partitions with non-zero data points.

Popolar modern datasets are very sparse! Actually, the datasets are spares after projection, so they live on low dimensional manifolds.

Modern Dataset Structure

2-D visualization of Cifar-10's representation embeddings after projection.

Rademacher complexity bounds (Bartlett & Mendelson, 2002) Uniform stability bounds (Bousquet & Elisseef, 2002) Robust generalization bounds (Xu & Mannor, 2012)

All those bounds cannot directly take advantage of the input data structure!

Definition ($(K, \epsilon(\cdot))$ -robust)

- 1. Algorithm $\mathcal{A}: \mathcal{Z}^n \to \mathbb{R};$
- 2. The input space \mathcal{Z} can be partitioned into K disjoint sets $\{C_k\}_{k=1}^{K}$;
- 3. if $s, z \in C_k$, then $|\ell(\mathcal{A}_S, s) \ell(\mathcal{A}_S, z)| \le \epsilon(S)$.

Proposition (Xu & Mannor, 2012)

- 1. $\ell(h, z) \le B;$
- 2. \mathcal{A} is $(\mathcal{K}, \epsilon(\cdot))$ -robust (with $\{\mathcal{C}_k\}_{k=1}^{\mathcal{K}}$);

with probability at least $1 - \delta$,

$$\mathbb{E}_{z}[\ell(\mathcal{A}_{S},z)] \leq \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{S},z_{i}) + \epsilon(S) + B \sqrt{\frac{2K \ln 2 + 2\ln(1/\delta)}{n}}.$$

Example (Xu & Mannor, 2012 (Lasso)) \mathcal{Z} is compact, and loss function $\ell(\mathcal{A}_S, z) = |z^{(y)} - \mathcal{A}_S(z^{(x)})|$. Lasso can be formulated as:

minimize :
$$\frac{1}{n} \sum_{i=1}^{n} (s_i^{(y)} - w^{\top} s_i^{(x)})^2 + c \|w\|_1.$$

This algorithm is $(\mathcal{N}(\nu/2, \mathcal{Z}, \|\cdot\|_{\infty}), \nu(\frac{1}{n}\sum_{i=1}^{n}(s_{i}^{(y)})^{2})/c + \nu)$ -robust for all $\nu > 0$.

Example (Xu & Mannor, 2012 (PCA)) For $\mathcal{Z} \subset \mathbb{R}^m$, a set with the maximum ℓ_2 norm bounded by B, with loss function

$$\ell((w_1,\ldots,w_d),z)=\sum_{j=1}^d(w_j^{\top}z)^2,$$

then finding the first d principal components via the optimization problem:

Maximize:
$$\sum_{i=1}^{n} \sum_{j=1}^{d} (w_j^{\top} s_i)^2$$

with the constraint that $||w_i||_2 = 1$ and $w_i^{\top} w_i = 0$ for $i \neq j$ is $(\mathcal{N}(\gamma/2, \mathbb{Z}, \|\cdot\|_2), 2d\gamma B)$ -robust, for all $\gamma > 0$.

Our Bounds

Theorem

1. $\ell(h, z) \leq B$; 2. \mathcal{A} is $(K, \epsilon(\cdot))$ -robust (with $\{\mathcal{C}_k\}_{k=1}^{K}$);

with probability at least $1 - \delta$, the following holds:

$$\mathbb{E}_{z}[\ell(\mathcal{A}_{S},z)] \leq \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{S},z_{i}) + \epsilon(S) + \zeta(\mathcal{A}_{S}) \left((\sqrt{2}+1) \sqrt{\frac{|\mathcal{T}_{S}| \ln(2K/\delta)}{n}} + \frac{2|\mathcal{T}_{S}| \ln(2K/\delta)}{n} \right),$$

where $\mathcal{I}_k^S := \{i \in [n] : z_i \in \mathcal{C}_k\}, \zeta(\mathcal{A}_S) := \max_{z \in \mathcal{Z}} \{\ell(\mathcal{A}_S, z)\}, \text{ and } \mathcal{T}_S := \{k \in [K] : |\mathcal{I}_k^S| \ge 1\}.$

1. (Xu & Mannor, 2012)
$$B\sqrt{\frac{2K\ln 2+2\ln(1/\delta)}{n}}$$

2. (Ours) $\zeta(\mathcal{A}_{S})\left((\sqrt{2}+1)\sqrt{\frac{|\mathcal{T}_{S}|\ln(2K/\delta)}{n}}+\frac{2|\mathcal{T}_{S}|\ln(2K/\delta)}{n}\right)$

where $\mathcal{I}_k^S := \{i \in [n] : z_i \in \mathcal{C}_k\}$, $\zeta(\mathcal{A}_S) := \max_{z \in \mathcal{Z}} \{\ell(\mathcal{A}_S, z)\}$, and $\mathcal{T}_S := \{k \in [K] : |\mathcal{I}_k^S| \ge 1\}$.

1. (Xu & Mannor, 2012)
$$B\sqrt{\frac{2K\ln 2+2\ln(1/\delta)}{n}}$$

2. (Ours) $\zeta(\mathcal{A}_{\mathcal{S}})\left((\sqrt{2}+1)\sqrt{\frac{|\mathcal{T}_{\mathcal{S}}|\ln(2K/\delta)}{n}}+\frac{2|\mathcal{T}_{\mathcal{S}}|\ln(2K/\delta)}{n}\right)$

where $\mathcal{I}_k^S := \{i \in [n] : z_i \in \mathcal{C}_k\}$, $\zeta(\mathcal{A}_S) := \max_{z \in \mathcal{Z}} \{\ell(\mathcal{A}_S, z)\}$, and $\mathcal{T}_S := \{k \in [K] : |\mathcal{I}_k^S| \ge 1\}$.

K v.s. $|\mathcal{T}_S|$

Comparisons

Figure 3. The values of K versus $|\mathcal{T}_S|$ with real-world data and the ϵ -covering. The values of $|\mathcal{T}_S|$ are extremely small compared to those of K in all datasets.

Figure 4. The values of K versus $|\mathcal{T}_S|$ with real-world data and the clustering using unlabeled data. With clustering to reduce K, we still have $|\mathcal{T}_S| < K$. Here, $|\mathcal{T}_S|$ was close to zero for Semeion.

Figure 5. The values of K versus $|\mathcal{T}_S|$ with real-world data and random projection. With random projection to reduce K, we still have $|\mathcal{T}_S| < 30 < K = 100 < n \approx 60,000$ for the real-life datasets. Here, n is the full train data size of each dataset: e.g., n = 60,000 for MNIST.

 $K \gg |\mathcal{T}_S|$

Proposition

1.
$$p_k = \mathbb{P}(z \in C_k)$$
 where $p_1 \ge p_2 \ge \cdots \ge p_K$;
2. p_k decays as $p_k \le Ce^{-(k/\beta)^{\alpha}}$;

with probability at least $1 - \delta$,

$$|\mathcal{T}_{\mathcal{S}}| \leq \beta (\ln n)^{1/lpha} + C(e-1) \frac{eta}{lpha} + \log(1/\delta).$$

- 1. Recall that Lasso is $(\mathcal{N}(\nu/2, \mathbb{Z}, \|\cdot\|_{\infty}), \nu(\frac{1}{n}\sum_{i=1}^{n}(s_{i}^{(\nu)})^{2})/c + \nu)$ -robust for all $\nu > 0$.
- 2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^d$. Given any $\nu > 0$, let z follow a distribution \mathcal{D}_z , such that $z^{(x)} = (x^{(1)^\top}, x^{(2)^\top})^\top$, where $x^{(1)} \sim N(0, I_p)|_{[-1,1]^p}$. $x^{(2)} \sim N(\mu, \sigma^2 I_r)|_{[-1,1]^r}$, and r = d p, $z^{(y)} = w^{*\top} z^{(x)}$, where $||w^*||_1 \leq 1$.

- 1. Recall that Lasso is $(\mathcal{N}(\nu/2, \mathcal{Z}, \|\cdot\|_{\infty}), \nu(\frac{1}{n}\sum_{i=1}^{n}(s_{i}^{(\nu)})^{2})/c + \nu)$ -robust for all $\nu > 0$.
- 2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^d$. Given any $\nu > 0$, let z follow a distribution \mathcal{D}_z , such that $z^{(x)} = (x^{(1)^\top}, x^{(2)^\top})^\top$, where $x^{(1)} \sim N(0, I_p)|_{[-1,1]^p}$. $x^{(2)} \sim N(\mu, \sigma^2 I_r)|_{[-1,1]^r}$, and r = d p, $z^{(y)} = w^{*\top} z^{(x)}$, where $||w^*||_1 \leq 1$.

- 1. Recall that Lasso is $(\mathcal{N}(\nu/2, \mathcal{Z}, \|\cdot\|_{\infty}), \nu(\frac{1}{n}\sum_{i=1}^{n}(s_{i}^{(y)})^{2})/c + \nu)$ -robust for all $\nu > 0$.
- 2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^d$. Given any $\nu > 0$, let z follow a distribution \mathcal{D}_z , such that $z^{(x)} = (x^{(1)^\top}, x^{(2)^\top})^\top$, where $x^{(1)} \sim N(0, I_p)|_{[-1,1]^p}$. $x^{(2)} \sim N(\mu, \sigma^2 I_r)|_{[-1,1]^r}$, and r = d p, $z^{(y)} = w^{*\top} z^{(x)}$, where $||w^*||_1 \leq 1$.

- 1. Recall that Lasso is $(\mathcal{N}(\nu/2, \mathcal{Z}, \|\cdot\|_{\infty}), \nu(\frac{1}{n}\sum_{i=1}^{n}(s_{i}^{(y)})^{2})/c + \nu)$ -robust for all $\nu > 0$.
- 2. Consider $z^{(y)} \in \mathbb{R}$ and $z^{(x)} \in \mathbb{R}^d$. Given any $\nu > 0$, let z follow a distribution \mathcal{D}_z , such that $z^{(x)} = (x^{(1)^\top}, x^{(2)^\top})^\top$, where $x^{(1)} \sim N(0, I_p)|_{[-1,1]^p}$. $x^{(2)} \sim N(\mu, \sigma^2 I_r)|_{[-1,1]^r}$, and r = d p, $z^{(y)} = w^{*\top} z^{(x)}$, where $||w^*||_1 \leq 1$.

There exists parameters such that our bound is much tighter than that in Proposition in Xu & Mannor as $|\mathcal{T}_{\mathcal{S}}| = \Theta((2/\nu)^{p+1}) \ll \Theta((2/\nu)^{d+1}) = \mathcal{N}(\nu/2, \mathcal{Z}, \|\cdot\|_{\infty}).$

Algorithmic Stability

Training sample: S.

Training sample: S.

A learning algorithm $\mathscr{A}: \mathscr{Z}^m \to \mathcal{F}$ outputs a function $\mathcal{A}_S \in \mathcal{F}.$

Training sample: S. A learning algorithm $\mathscr{A} : \mathscr{Z}^m \to \mathscr{F}$ outputs a function $\mathcal{A}_S \in \mathscr{F}$.

Definition (Uniform Stability(Bousquet & Elisseeff, 2002))

An algorithm $\mathscr A$ has uniform stability $\beta^{\rm U}_m$ with respect to the loss function I if

$$|I(\mathcal{A}_{\mathcal{S}},z)-I(\mathcal{A}_{\mathcal{S}\setminus i},z)|\leq \beta_m^{\mathsf{U}}$$

holds for all $S \in \mathbb{Z}^m$, $1 \leq i \leq m$, and $z \in \mathbb{Z}$.

Example (Regularized least square regression)

- 1. Let $z^{(y)} \in [0, B]$ and $z^{(x)} \in [0, 1]$. The regularized least squares regression is defined as $\mathcal{A}_S = \operatorname{argmin}_w \frac{1}{n} \sum_{i=1}^n \ell(w, z_i) + \lambda |w|^2$, where $\ell(w, z) = (w \cdot z^{(x)} - z^{(y)})^2$ and $w \in \mathbb{R}$.
- 2. Uniform stability: $\beta \leq \frac{2B^2}{\lambda n}$.
- 3. Consider z: $z^{(y)} = w^* \cdot z^{(x)} + \epsilon \mathbf{1}(|\epsilon| < B)$. In addition, $z^{(x)}$ follows a continuous distribution on [0, 1].

With a probability of at least $1 - \delta$, $|\mathcal{T}_S| = \Theta(2\nu)$. Thus, if $B^2/\lambda \gg 2/\nu$, then our bound is a **far more** precise bound than that obtained via uniform stability.

The key technical hurdle: to avoid an explicit \sqrt{K} dependence for the following form:

$$\sum_{i=1}^{K} a_i(X) \left(p_i - \frac{X_i}{n} \right),$$

where a_i is an arbitrary function with $a_i(X) \ge 0$ for all $i \in \{1, \ldots, K\}$.

Lemma

For any $\delta > 0$, with probability at least $1 - \delta$,

$$\sum_{i=1}^{K} a_i(X) \left(p_i - \frac{X_i}{n} \right) \leq \left(\sum_{i=1}^{K} a_i(X) \sqrt{p_i} \right) \sqrt{\frac{2 \ln(K/\delta)}{n}}.$$

- 1. Lemma holds with $a_i(X) = \operatorname{sign}(p_i \frac{X_i}{n})$, where $\operatorname{sign}(q)$ is the sign of q.
- 2. If $p_i = 1/K$, recovers Bretagnolle-Huber-Carol inequality.
- 3. $p_1 \approx 1$, other p_i 's are ≈ 0 , then $\sum \sqrt{p_i} \approx 1$.

Lemma

For any $\delta > 0$, with probability at least $1 - \delta$,

$$\sum_{i=1}^{K} a_i(X) \left(p_i - \frac{X_i}{n} \right) \leq \left(\sum_{i=1}^{K} a_i(X) \sqrt{p_i} \right) \sqrt{\frac{2 \ln(K/\delta)}{n}}.$$

- 1. Lemma holds with $a_i(X) = \operatorname{sign}(p_i \frac{X_i}{n})$, where $\operatorname{sign}(q)$ is the sign of q.
- 2. If $p_i = 1/K$, recovers Bretagnolle-Huber-Carol inequality.
- 3. $p_1 \approx 1$, other p_i 's are ≈ 0 , then $\sum \sqrt{p_i} \approx 1$.

Our result interpolates between these cases!

Thanks for listening!