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Background

Regret minimization in RL

A fundamental paradigm for
sequential decision making.

In each round the agent
interacts with an unknown
environment.

Costs can be either stochastic
or adversarial.

At the the end of each episode
the agent observes feedback.

Cooperation in RL

Multiple agent that learn the
same environment share
information in order to
improve performance.

Applications: communication
networks, traffic routing,
robotics, etc.

(Remark: no strategic aspects)
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Fresh vs Non-fresh randomness

Fresh randomness

Duplicates of the same
environment - cost and
transition to next state is
freshly randomized.

E.g., Atari games.

Non-fresh randomness

The same environment - agents
that take the same action in
the same state observe the
same cost and next state.
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Central questions

“How much can we gain from cooperation?”

“Is there a different limit for fresh and non-fresh randomness?”
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Related work

Optimal regret∗ in single-agent stochastic and adversarial MDPs.
[Zimin and Neu, 2013, Rosenberg and Mansour, 2019, Jin et al.,
2020]

√
H2K

(known transition full-info)

√
H3SAK

(unknown transition bandit feedback)

In multi-agent adversarial MAB, one can achieve regret that scales
as [Cesa-Bianchi et al., 2019],

√
K +

√
AK/m.

Cooperation in RL was considered only in the stochastic and fresh
randomness case by Lidard et al. [2021],√

H4SAK/m.

K - #episodes A - #actions S - #states H - horizon m - #agents
∗Regret bounds in this presentation ignore constants and poly-logarithmic factors
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Our contribution

We are the first to study non-fresh randomness, and to face new
challenges in this model.

First to consider adversarial cost in cooperative learning in MDPs.

Thoroughly analyze all relevant settings, and prove
nearly-matching regret lower and upper bounds.
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Problem Setup

For each episode k:

Choose a policy for each of the m agents.

Agents start at an initial state s1. At each time h = 1, ...,H:

Each agent sample an action ah ∼ πk(· | sh).
Agent suffers cost ch(sh, ah) and transition to a new state
sh+1 ∼ ph(· | sh, ah), where p is unknown.
(with non-fresh randomness the next state is sampled once for each
state-action pair)

The learner observe the trajectory and the costs over the
trajectory (i.e., bandit feedback) of all agents.

Regret

The performance is measured by the regret - the difference between the
total agent’s cost and the cost of the best policy in hindsight.
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Fresh Randomness - Stochastic MDP

The basic approach for single-agent stochastic MDPs is “Optimism
Under Uncertainty”.

Compute an optimistic estimate of Q∗ and act greedily with
respect to it.

One can show that the regret scales as the sum of confidence
radius on the agent’s trajectory.

With non-fresh randomness we get m times more samples and the
confidence radius shrinks faster. With that we can show optimal
regret for each agent:

RK ≲

√
H3SAK

m
.
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Non-fresh - Stochastic MDP

Much more challenging setting:

If agents play a deterministic policy (e.g., optimistic algorithm),
then they all follow the same trajectory. Hence, we don’t have
additional feedback.

Optimism alone is no longer a good approach.

In fact, we show a lower bound of
√
H2SK regardless on the

number of agents!
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Non-fresh - Stochastic MDP

Algorithm (COOP-ULCAE):

Maintain upper and lower confidence bounds on Q∗.

Eliminate arms a such that Qk
h
(s, a) > Q

k
h(s, a

′).

With probability 1− ϵ play the optimistic policy.

With probability ϵ:

Sample random h.
At time h take a random active action.
At the rest of the time play the optimistic policy.
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Analysis

On the optimistic policy path we obtain ϵm times more feedback.

Hence, the regret in these rounds is at most
√

SAK
mϵ .
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Analysis

We take an active action with the exploration policy. Using that,
we can show that the regret is similar to a single-agent regret.

Each agent explores only O(ϵK) episodes.

Hence, the total regret from these rounds is
√
SAKϵ
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Non-fresh - Stochastic MDP

Setting ϵ properly allows us to prove the following regret bound.

Theorem

Under non-fresh randomness and stochastic costs COOP-ULCAE
guarantees individual regret of,

RK ≲
√
H5SK +

√
H7SAK√

m
.
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Adversarial cost

The adversarial setting is a very general model which generalizes
stochastic costs.

It is more challenging to estimate the cost.

We use an importance-sampling estimator

ĉ(s, a) =
I{“some agent visited s and took a”}
Pr(“some agent visited s and took a”)

· c(s, a)

This is an unbiased estimator.

We can show small variance with multi agent, which allows us to
show lower regret.

More challenging analysis under non-fresh randomness.
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Summary of our results

Setting Regret Lower Bound

Fresh, stochastic,
unknown p

√
H3SAK

m

√
H3SAK

m

Fresh, adversarial,
known p

√
H2K +

√
H2SAK

m

√
H2K +

√
H2SAK

m

Fresh, adversarial,
unknown p

√
H2K +

√
H4S2AK

m

√
H2K +

√
H3SAK

m

Non-fresh, stochastic,
unknown p

√
H5SK +

√
H7SAK√

m

√
H2SK +

√
H3SAK

m

Non-fresh, adversarial,
known p

√
H2SK +

√
H2SAK

m

√
H2SK +

√
H2SAK

m

Non-fresh, adversarial,
unknown p

√
H4S2K (*)

√
H2SK +

√
H3SAK

m

(*) The algorithm requires m =
√
K agents.
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Thank you
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