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Estimating the uncertainty of the predictions

Modern ML (e.g. NNs) → point-wise predictions

Info. on the uncertainty of the predictions → Bayesian
formulation

Posterior dist. p(w|D) = p(w)p(D|w)/p(D)

Predictive dist. p(y|D, x) =
∫
p(y|w, x) p(w|D)dw

p(D) intractable! ⇒ approximate solutions s.a. MCMC -based
techinques, VI, EP, AVB, etc.

⇒ Inference with finite set of parameters (e.g. neurons in
BNNs)
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Variational Inference

VI → Parametric q to approximate target (intractable)
posterior p

Evidence Lower Bound (ELBO):

L =
∑N
i=1Eq[log p(yi|W,xi)] − KL(q|prior)

I Monte Carlo and mini-batches!
I Closed-form solution if p and q are Gaussian!

If p(w|D) ∈ qθ,
good

approximation!
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VI with implicit distributions
More flexible inference model ⇒ Implicit model for weights
Implicit distribution: Samples available, but not the p.d.f.

ML training → EpD(x) log pφ(y|x)

max
θ,φ

EpD(x)
[
−KL(qθ(w)||p(w))︸ ︷︷ ︸

Eqθ(w)[T ∗w(w)]

+Eqθ(w) log pφ(y|x,w)
]

[Mescheder et. al., 2017]
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Parameter-space vs. Function-space
Regular approximate Bayesian inference ⇒ parameter space

I Curse of dimensionality, correlations and symmetries & local
optima

Function-space is challenging but with benefitial:

1. Avoids issues related to the original inference problem space
2. Better predictions and uncertainty estimates
3. More flexible priors than GPs

Implicit Processes ⇒ generalization for the prior and posterior
formulation in function-space

[Sun et al., 2019]
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Implicit Processes
Collection of random variables f(·), such that any finite
collection (f(x1), . . . , f(xn)) has joint distribution defined by the
generative process:

z ∼ p(z), f(xn) = gθ(xn, z)

Bayesian neural networks: θ ⇒ means and variances of W

W ∼ N (0, I) , f(x) = gθ(W,x)

Neural sampler: θ ⇒ weights of non-linear function gθ(·, ·).

Prior samples Neural sampler
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Learning under Implicit Process Priors
Goals:

1. Find flexible approximations to the exact posterior
distribution

2. Train all model’s parameters

Previous approaches:

1. Variational Implicit Process (VIP, Ma et al., 2019)
I IP prior and GP approximation for the predictions
� Only provides GP-like predictions (Normally distributed)

2. Functional Bayesian Neural Network (FBNN, Sun et al.,
2019)
I IP prior & posterior, trained using Stein Gradient Estimator
� SGE approach cannot train the prior parameters
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Inference with IPs and inducing points
Implicit process f(x) = hφ(x, ε) as approximate implicit
posterior of the IP prior (∼FBNNs, full IP-based model)

Approximate Inference via functional VI (f-ELBO):

L(q) =
N∑
i=1
Eq[log p(yi|f(xi))]−KL(q|prior) .

Challenges:

1. Scalability with N
I M � N inducing points as in Sparse GPs (X, u), with

u = f(X)

2. Intractable conditional posterior
I Partial Monte Carlo GP approximation for the conditional

p(f |u) in the posterior (∼VIPs)
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Training the system
Final posterior approximation (with implicit qφ(u)):

q(f ,u) = pθ(f |u)qφ(u)

f-ELBO objective:

L(q) = Eq

[
log p(y|f)����pθ(f |u)pθ(u)

����pθ(f |u)qφ(u)

]

=
N∑
i=1
Eqφ,θ [log p(yi|fi)]−KL(qφ(u)|pθ(u))

KL-divergence intractable (implicit q and p) ⇒ classifier
(DNN)

KL(qφ(u)|pθ(u)) = −Eq

[
log pθ(u)

qφ(u)

]
= −Eq [TΩ?(u)]

[Mescheder et. al., 2017]
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Challenges: KL-evaluation
Poor prior fit, important in complex models [Knoblauch et al. 2019]
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Solution: Exchange KL by the symmetrized KL-divergence

KL(qφ|pθ) ≈
1
2(KL(qφ|pθ) + KL(pθ|qφ)) ,

KL as regularization in the ELBO ⇒ changes often improve
results
I Easy to compute dependencies w.r.t. θ
I Good empirical results + little added computational cost

[Wenzel et. al., 2020]
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Challenges: KL-evaluation
Poor prior fit, important in complex models [Knoblauch et al. 2019]
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Solution: Exchange KL by the symmetrized KL-divergence

KL(qφ|pθ) ≈
1
2(KL(qφ|pθ) + KL(pθ|qφ)) ,

KL as regularization in the ELBO ⇒ changes often improve
results
I Easy to compute dependencies w.r.t. θ
I Good empirical results + little added computational cost

[Wenzel et. al., 2020]
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Challenges: KL-evaluation
Poor prior fit, important in complex models [Knoblauch et al. 2019]
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Solution: Exchange KL by the symmetrized KL-divergence

KL(qφ|pθ) ≈
1
2(KL(qφ|pθ) + KL(pθ|qφ)) ,

KL as regularization in the ELBO ⇒ changes often improve
results
I Easy to compute dependencies w.r.t. θ
I Good empirical results + little added computational cost

[Wenzel et. al., 2020]
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Final setup
Final objective function (with α-divergences + symmetrized KL):

L?α(φ, θ) = 1
α

N∑
i=1

logEqφ,θ [p(yi|fi)
α]− 1

2 [KL(qφ||pθ) + KL(pθ||qφ)]

And pθ(f |u) ?
Remember that q(f ,u) = pθ(f |u)qφ(u)

GP approximation (∼VIP)
E[f(x)] = m?

MLE(x) + Kf ,u(Ku,u + Iσ2)−1(u−m?
MLE(X)) ,

Var(f(x)) = Kf ,f −Kf ,f (Ku,u + Iσ2)−1Ku,f

Covariances ⇒ Monte Carlo methods sampling from the prior

Predictions approximated by Monte Carlo (mixture of Gaussians):

p(f(x∗)|y,X) ≈ 1
S

S∑
s=1

pθ(f(x∗)|us) , u ∼ qφ(u)
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Synthetic data experiments
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VIP regularization term is not used
Same BNN prior for all methods

SIP is the only one with fitted prior
samples and bimodal predictive

distribution

SIP corrects the model bias that induces the wrong
posterior!

I Combination of flexibility of the framework + α-divergences
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Evolution of the inducing points
Inducing points spread and cover the whole training data range
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Posterior parameters are not trained for this example:
slight underfitting + adversarial initialization
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Regression results

Ranking analysis (lower is better, 8 UCI datasets, 20 splits each, 2σ)
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RMSE
3 4 5
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3 4 5 6

CRPS
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Convergence experiments
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SIPNS is clearly faster, SIPBNN performs the best overall
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Conclusions

1. Approximate inference in parameter space presents intrinsic
difficulties

2. Approximate inference in function space is advantageous but
hard

! Allowing the model to train all of its parameters
! Provide flexible predictive distributions

3. SIP has new important properties
X Can learn the prior parameters
X Flexible posterior approximation via mixture of Gaussians
X Scalable with large amounts of data
X SIP can use other flexible priors based on implicit processes
X Capable of correcting wrong model bias from the formulation
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Thanks for your attention!

https://github.com/simonrsantana/sparse-implicit-processes
� simon.rodriguez@icmat.es

7 simonrodsan
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