## Function-space Inference with Sparse Implicit Processes

Simón Rodríguez Santana<sup>1</sup> Bryan Zaldivar<sup>2</sup> Daniel Hernández-Lobato<sup>3</sup>

<sup>1</sup> Instituto de Ciencias Matemáticas (ICMAT-CSIC)

<sup>&</sup>lt;sup>2</sup> Instituto de Física Corpuscular, Universidad de Valencia y CSIC

<sup>&</sup>lt;sup>3</sup> Escuela Politécnica Superior, Universidad Autónoma de Madrid

### Estimating the uncertainty of the predictions

Modern ML (e.g. NNs)  $\rightarrow$  point-wise predictions

Info. on the uncertainty of the predictions  $\rightarrow$  Bayesian formulation

Posterior dist. 
$$p(\mathbf{w}|\mathcal{D}) = p(\mathbf{w})p(\mathcal{D}|\mathbf{w})/p(\mathcal{D})$$
 Predictive dist. 
$$p(y|\mathcal{D}, x) = \int p(y|\mathbf{w}, x) \, p(\mathbf{w}|\mathcal{D}) \, d\mathbf{w}$$

### Estimating the uncertainty of the predictions

Modern ML (e.g. NNs)  $\rightarrow$  point-wise predictions

Info. on the uncertainty of the predictions  $\rightarrow$  Bayesian formulation

Posterior dist. 
$$p(\mathbf{w}|\mathcal{D}) = p(\mathbf{w})p(\mathcal{D}|\mathbf{w})/p(\mathcal{D})$$
  
Predictive dist.  $p(y|\mathcal{D}, x) = \int p(y|\mathbf{w}, x) \frac{p(\mathbf{w}|\mathcal{D})}{p(\mathbf{w}|\mathcal{D})} d\mathbf{w}$ 

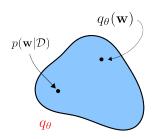
- $p(\mathcal{D})$  intractable!  $\Rightarrow$  approximate solutions s.a. MCMC-based techniques, VI, EP, AVB, etc.
  - $\Rightarrow$  Inference with finite set of parameters (e.g. neurons in BNNs)

 $VI \rightarrow Parametric \ q$  to approximate target (intractable) posterior p

Evidence Lower Bound (ELBO):

$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{x}_{i})] - \left[ \text{KL}(q|\text{prior}) \right]$$

- ▶ Monte Carlo and mini-batches!
- ightharpoonup Closed-form solution if p and q are Gaussian!



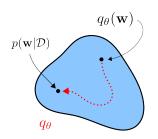
If  $p(\mathbf{w}|\mathcal{D}) \in q_{\theta}$ , good approximation!

 $VI \rightarrow Parametric \ q$  to approximate target (intractable) posterior p

Evidence Lower Bound (ELBO):

$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{x}_{i})] - \left[ \text{KL}(q|\text{prior}) \right]$$

- ▶ Monte Carlo and mini-batches!
- ightharpoonup Closed-form solution if p and q are Gaussian!



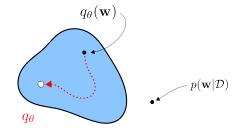
If  $p(\mathbf{w}|\mathcal{D}) \in q_{\theta}$ , good approximation!

 $VI \rightarrow Parametric \ q$  to approximate target (intractable) posterior p

Evidence Lower Bound (ELBO):

$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{x}_{i})] - \left[ \text{KL}(q|\text{prior}) \right]$$

- ▶ Monte Carlo and mini-batches!
- ightharpoonup Closed-form solution if p and q are Gaussian!



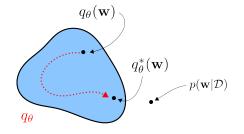
If  $p(\mathbf{w}|\mathcal{D}) \notin q_{\theta}$ , we do the best we can (maybe not enough...)

 $VI \rightarrow Parametric \ q$  to approximate target (intractable) posterior p

Evidence Lower Bound (ELBO):

$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{x}_{i})] - \begin{bmatrix} \mathrm{KL}(q|\mathrm{prior}) \\ \uparrow \end{bmatrix}$$

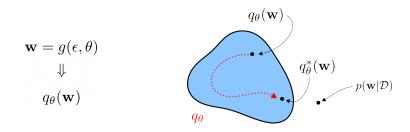
- ▶ Monte Carlo and mini-batches!
- ightharpoonup Closed-form solution if p and q are Gaussian!



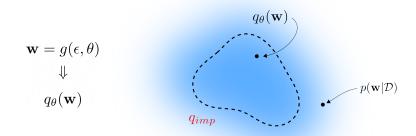
If  $p(\mathbf{w}|\mathcal{D}) \notin q_{\theta}$ , we do the best we can (maybe not enough...)

More flexible inference model  $\Rightarrow$  Implicit model for weights Implicit distribution: Samples available, but not the p.d.f.

More flexible inference model  $\Rightarrow$  Implicit model for weights Implicit distribution: Samples available, but not the p.d.f.

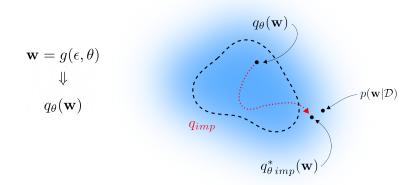


More flexible inference model  $\Rightarrow$  Implicit model for weights Implicit distribution: Samples available, but not the p.d.f.



4

More flexible inference model  $\Rightarrow$  Implicit model for weights Implicit distribution: Samples available, but not the p.d.f.



4

More flexible inference model  $\Rightarrow$  Implicit model for weights Implicit distribution: Samples available, but not the p.d.f.

4

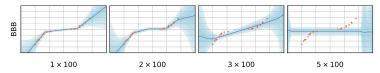
More flexible inference model  $\Rightarrow$  Implicit model for weights Implicit distribution: Samples available, but not the p.d.f.

[Mescheder et. al., 2017]

Regular approximate Bayesian inference  $\Rightarrow$   $\mathbf{parameter}$   $\mathbf{space}$ 

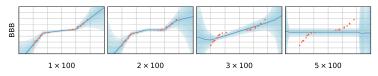
Regular approximate Bayesian inference  $\Rightarrow$  parameter space

 Curse of dimensionality, correlations and symmetries & local optima



#### Regular approximate Bayesian inference $\Rightarrow$ parameter space

 Curse of dimensionality, correlations and symmetries & local optima

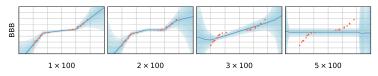


#### Function-space is challenging but with benefitial:

- 1. Avoids issues related to the original inference problem space
- 2. Better predictions and uncertainty estimates
- 3. More flexible priors than GPs

Regular approximate Bayesian inference  $\Rightarrow$  parameter space

 Curse of dimensionality, correlations and symmetries & local optima



#### Function-space is challenging but with benefitial:

- 1. Avoids issues related to the original inference problem space
- 2. Better predictions and uncertainty estimates
- 3. More flexible priors than GPs

 $\begin{array}{c} \textbf{Implicit Processes} \Rightarrow \text{generalization for the prior and posterior} \\ \text{formulation in function-space} \end{array}$ 

[Sun et al., 2019]

#### Implicit Processes

Collection of random variables  $f(\cdot)$ , such that any finite collection  $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))$  has joint distribution defined by the generative process:

$$\mathbf{z} \sim p(\mathbf{z}), \quad f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z})$$

#### Implicit Processes

Collection of random variables  $f(\cdot)$ , such that any finite collection  $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))$  has joint distribution defined by the generative process:

$$\mathbf{z} \sim p(\mathbf{z}), \quad f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z})$$

Bayesian neural networks:  $\theta \Rightarrow$  means and variances of W

$$\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad f(\mathbf{x}) = g_{\theta}(\mathbf{W}, \mathbf{x})$$

#### Implicit Processes

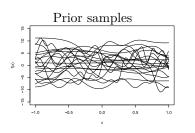
Collection of random variables  $f(\cdot)$ , such that any finite collection  $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))$  has joint distribution defined by the generative process:

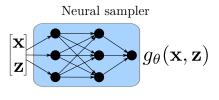
$$\mathbf{z} \sim p(\mathbf{z}), \quad f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z})$$

Bayesian neural networks:  $\theta \Rightarrow$  means and variances of W

$$\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad f(\mathbf{x}) = g_{\theta}(\mathbf{W}, \mathbf{x})$$

**Neural sampler**:  $\theta \Rightarrow$  weights of non-linear function  $g_{\theta}(\cdot, \cdot)$ .





### Learning under Implicit Process Priors

#### Goals:

- 1. Find flexible approximations to the exact posterior distribution
- 2. Train all model's parameters

### Learning under Implicit Process Priors

#### Goals:

- 1. Find flexible approximations to the exact posterior distribution
- 2. Train all model's parameters

#### Previous approaches:

- 1. Variational Implicit Process (VIP, Ma et al., 2019)
  - ▶ IP prior and GP approximation for the predictions
  - ⊘ Only provides GP-like predictions (Normally distributed)
- Functional Bayesian Neural Network (FBNN, Sun et al., 2019)
  - ▶ IP prior & posterior, trained using Stein Gradient Estimator
  - $\oslash$  SGE approach cannot train the prior parameters

#### Inference with IPs and inducing points

Implicit process  $f(\mathbf{x}) = h_{\phi}(\mathbf{x}, \boldsymbol{\epsilon})$  as approximate implicit posterior of the IP prior ( $\sim FBNNs$ , full IP-based model)

Approximate Inference via functional VI (f-ELBO):

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(y_{i}|f(\mathbf{x}_{i}))] - \text{KL}(q|\text{prior}).$$

### Inference with IPs and inducing points

Implicit process  $f(\mathbf{x}) = h_{\phi}(\mathbf{x}, \boldsymbol{\epsilon})$  as approximate implicit posterior of the IP prior ( $\sim FBNNs$ , full IP-based model)

Approximate Inference via functional VI (f-ELBO):

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(y_i|f(\mathbf{x}_i))] - \text{KL}(q|\text{prior}).$$

#### Challenges:

- 1. Scalability with N
  - ▶  $M \ll N$  inducing points as in Sparse GPs ( $\overline{\mathbf{X}}$ ,  $\mathbf{u}$ ), with

$$\mathbf{u} = f(\overline{\mathbf{X}})$$

#### Inference with IPs and inducing points

Implicit process  $f(\mathbf{x}) = h_{\phi}(\mathbf{x}, \boldsymbol{\epsilon})$  as approximate implicit posterior of the IP prior ( $\sim FBNNs$ , full IP-based model)

Approximate Inference via functional VI (f-ELBO):

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(y_i|f(\mathbf{x}_i))] - \text{KL}(q|\text{prior}).$$

#### Challenges:

- 1. Scalability with N
  - ▶  $M \ll N$  inducing points as in Sparse GPs  $(\overline{\mathbf{X}}, \mathbf{u})$ , with

$$\mathbf{u} = f(\overline{\mathbf{X}})$$

- 2. Intractable conditional posterior
  - Partial Monte Carlo GP approximation for the conditional  $p(\mathbf{f}|\mathbf{u})$  in the posterior ( $\sim VIPs$ )

#### Training the system

Final posterior approximation (with implicit  $q_{\phi}(\mathbf{u})$ ):

$$q(\mathbf{f}, \mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$$

#### Training the system

Final posterior approximation (with implicit  $q_{\phi}(\mathbf{u})$ ):

$$q(\mathbf{f}, \mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$$

f-ELBO objective:

$$\mathcal{L}(q) = \mathbb{E}_{q} \left[ \log \frac{p(\mathbf{y}|\mathbf{f}) p_{\theta}(\mathbf{f}|\mathbf{u}) p_{\theta}(\mathbf{u})}{p_{\theta}(\mathbf{f}|\mathbf{u}) q_{\phi}(\mathbf{u})} \right]$$
$$= \sum_{i=1}^{N} \mathbb{E}_{q_{\phi,\theta}} [\log p(y_{i}|f_{i})] - \text{KL}(q_{\phi}(\mathbf{u})|p_{\theta}(\mathbf{u}))$$

### Training the system

Final posterior approximation (with implicit  $q_{\phi}(\mathbf{u})$ ):

$$q(\mathbf{f}, \mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$$

f-ELBO objective:

$$\mathcal{L}(q) = \mathbb{E}_{q} \left[ \log \frac{p(\mathbf{y}|\mathbf{f}) p_{\theta}(\mathbf{f}|\mathbf{u}) p_{\theta}(\mathbf{u})}{p_{\theta}(\mathbf{f}|\mathbf{u}) q_{\phi}(\mathbf{u})} \right]$$
$$= \sum_{i=1}^{N} \mathbb{E}_{q_{\phi,\theta}} [\log p(y_{i}|f_{i})] - \text{KL}(q_{\phi}(\mathbf{u})|p_{\theta}(\mathbf{u}))$$

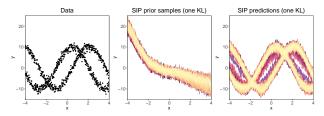
KL-divergence intractable (implicit q and p)  $\Rightarrow$  classifier (DNN)

$$\mathrm{KL}(q_{\phi}(\mathbf{u})|p_{\theta}(\mathbf{u})) = -\mathbb{E}_q \left[ \log \frac{p_{\theta}(\mathbf{u})}{q_{\phi}(\mathbf{u})} \right] = -\mathbb{E}_q \left[ T_{\Omega^*}(\mathbf{u}) \right]$$

[Mescheder et. al., 2017]

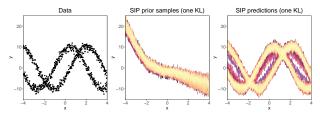
### Challenges: KL-evaluation

Poor prior fit, important in complex models [Knoblauch et al. 2019]



### Challenges: KL-evaluation

Poor prior fit, important in complex models [Knoblauch et al. 2019]

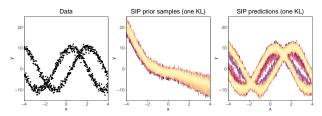


Solution: Exchange KL by the symmetrized KL-divergence

$$\mathrm{KL}(q_{\phi}|p_{\theta}) \approx \frac{1}{2} (\mathrm{KL}(q_{\phi}|p_{\theta}) + \mathrm{KL}(p_{\theta}|q_{\phi})),$$

### Challenges: KL-evaluation

Poor prior fit, important in complex models [Knoblauch et al. 2019]



Solution: Exchange KL by the symmetrized KL-divergence

$$\mathrm{KL}(q_{\phi}|p_{\theta}) \approx \frac{1}{2} (\mathrm{KL}(q_{\phi}|p_{\theta}) + \mathrm{KL}(p_{\theta}|q_{\phi})),$$

KL as regularization in the ELBO  $\Rightarrow$  changes often improve results

- $\triangleright$  Easy to compute dependencies w.r.t.  $\theta$
- ► Good empirical results + little added computational cost

[Wenzel et. al., 2020]

Final objective function (with  $\alpha$ -divergences + symmetrized KL):

$$\mathcal{L}_{\alpha}^{\star}(\phi, \theta) = \frac{1}{\alpha} \sum_{i=1}^{N} \log \mathbb{E}_{q_{\phi, \theta}}[p(y_i|f_i)^{\alpha}] - \frac{1}{2} \left[ \text{KL}(q_{\phi}||p_{\theta}) + \text{KL}(p_{\theta}||q_{\phi}) \right]$$

Final objective function (with  $\alpha$ -divergences + symmetrized KL):

$$\mathcal{L}_{\alpha}^{\star}(\phi, \theta) = \frac{1}{\alpha} \sum_{i=1}^{N} \log \mathbb{E}_{q_{\phi, \theta}}[p(y_i|f_i)^{\alpha}] - \frac{1}{2} \left[ \text{KL}(q_{\phi}||p_{\theta}) + \text{KL}(p_{\theta}||q_{\phi}) \right]$$

And  $p_{\theta}(\mathbf{f}|\mathbf{u})$  ?

Remember that  $q(\mathbf{f}, \mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$ 

Final objective function (with  $\alpha$ -divergences + symmetrized KL):

$$\mathcal{L}_{\alpha}^{\star}(\phi, \theta) = \frac{1}{\alpha} \sum_{i=1}^{N} \log \mathbb{E}_{q_{\phi, \theta}}[p(y_i|f_i)^{\alpha}] - \frac{1}{2} \left[ \text{KL}(q_{\phi}||p_{\theta}) + \text{KL}(p_{\theta}||q_{\phi}) \right]$$

And 
$$p_{\theta}(\mathbf{f}|\mathbf{u})$$
 ?

Remember that  $q(\mathbf{f}, \mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$ 

GP approximation ( $\sim$ VIP)

$$\mathbb{E}[f(\mathbf{x})] = m_{MLE}^{\star}(\mathbf{x}) + \mathbf{K_{f,u}}(\mathbf{K_{u,u}} + \mathbf{I}\sigma^2)^{-1}(\mathbf{u} - m_{MLE}^{\star}(\mathbf{X})),$$
  
$$\operatorname{Var}(f(\mathbf{x})) = \mathbf{K_{f,f}} - \mathbf{K_{f,f}}(\mathbf{K_{u,u}} + \mathbf{I}\sigma^2)^{-1}\mathbf{K_{u,f}}$$

 $\mathbf{Covariances} \Rightarrow \mathbf{Monte}$  Carlo methods sampling from the prior

Final objective function (with  $\alpha$ -divergences + symmetrized KL):

$$\mathcal{L}_{\alpha}^{\star}(\phi,\theta) = \frac{1}{\alpha} \sum_{i=1}^{N} \log \mathbb{E}_{q_{\phi,\theta}}[p(y_i|f_i)^{\alpha}] - \frac{1}{2} \left[ \text{KL}(q_{\phi}||p_{\theta}) + \text{KL}(p_{\theta}||q_{\phi}) \right]$$

#### And $p_{\theta}(\mathbf{f}|\mathbf{u})$ ?

Remember that  $q(\mathbf{f}, \mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$ 

GP approximation ( $\sim$ VIP)

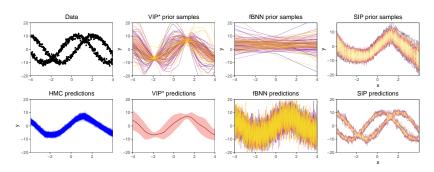
$$\mathbb{E}[f(\mathbf{x})] = m_{MLE}^{\star}(\mathbf{x}) + \mathbf{K_{f,u}}(\mathbf{K_{u,u}} + \mathbf{I}\sigma^2)^{-1}(\mathbf{u} - m_{MLE}^{\star}(\mathbf{X})),$$
  
$$\operatorname{Var}(f(\mathbf{x})) = \mathbf{K_{f,f}} - \mathbf{K_{f,f}}(\mathbf{K_{u,u}} + \mathbf{I}\sigma^2)^{-1}\mathbf{K_{u,f}}$$

 $\mathbf{Covariances} \Rightarrow \mathbf{Monte}$  Carlo methods sampling from the prior

Predictions approximated by Monte Carlo (mixture of Gaussians):

$$p(f(\mathbf{x}_*)|\mathbf{y}, \mathbf{X}) \approx \frac{1}{S} \sum_{s=0}^{S} p_{\theta}(f(\mathbf{x}_*)|\mathbf{u}_s), \quad \mathbf{u} \sim q_{\phi}(\mathbf{u})$$

#### Synthetic data experiments



VIP regularization term is not used Same BNN prior for all methods

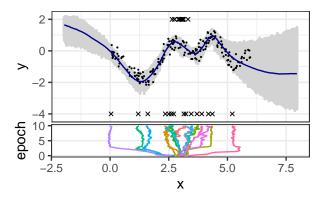
SIP is the only one with fitted prior samples and bimodal predictive distribution

# SIP corrects the model bias that induces the wrong posterior!

• Combination of flexibility of the framework +  $\alpha$ -divergences

### Evolution of the inducing points

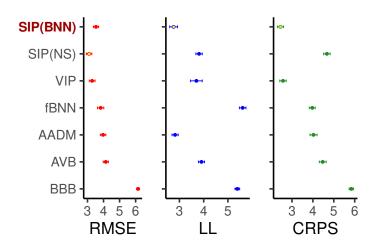
Inducing points spread and cover the whole training data range



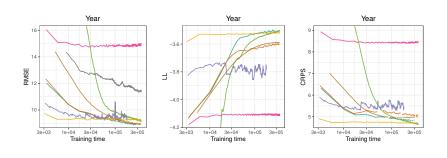
Posterior parameters are not trained for this example: slight underfitting + adversarial initialization

#### Regression results

Ranking analysis (lower is better, 8 UCI datasets, 20 splits each,  $2\sigma)$ 



#### Convergence experiments



$${\sf Method - AADM - AVB - fBNN(bnn) - fBNN(gp) - SIP (BNN) - SIP (NS) - VI - VIP}$$

 $SIP_{NS}$  is clearly faster,  $SIP_{BNN}$  performs the best overall

#### Conclusions

- 1. Approximate inference in parameter space presents intrinsic difficulties
- 2. Approximate inference in function space is advantageous but hard
  - ! Allowing the model to train all of its parameters
  - ! Provide flexible predictive distributions
- 3. **SIP** has new important properties
  - ✓ Can learn the prior parameters
  - ✓ Flexible posterior approximation via mixture of Gaussians
  - ✓ Scalable with large amounts of data
  - $\checkmark$  SIP can use other flexible priors based on implicit processes
  - ✓ Capable of correcting wrong model bias from the formulation

#### References

- ▶ Ma, C., Li, Y., Hernández-Lobato, J. M. Variational implicit processes. International Conference on Machine Learning, 2019.
- ▶ Titsias, M. (2009, April). Variational learning of inducing variables in sparse Gaussian processes. In Artificial Intelligence and Statistics (pp. 567-574).
- ▶ Knoblauch, J., Jewson, J. and Damoulas, T. "Generalized variational inference: Three arguments for deriving new posteriors." arXiv preprint arXiv:1904.02063 (2019).
- ▶ S. Sun, G. Zhang, J. Shi, R. Grosse. Functional Variational Bayesian Neural Networks. International Conference on Learning Representations, 2019.
- ▶ Mescheder, L., Nowozin, S., Geiger, A. Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. International Conference on Machine Learning, 2017.
- ▶ Rodrguez Santana, S. and Hernández-Lobato, D. Adversarial  $\alpha$ -divergence minimization for Bayesian approximate inference. Neurocomputing, (2020).

### Thanks for your attention!



https://github.com/simonrsantana/sparse-implicit-processes  $\boxtimes$  simon.rodriguez@icmat.es

simonrodsan