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Born-Infeld (BI) for AI:

Energy-Conserving Descent (ECD) for Optimization



Ackley 2d (nonconvex) Zakharov 10d (shallow)

Overview: Optimization of an objective function F

• Data analysis/Machine Learning [F = loss]
• Solving (Partial) Differential Equations

[F = Σ (PDEs)²+(boundary conditions)²]
• Many scientific applications

Gradient Descent with Momentum (GDM) can work well with modern tweaks.

Our proposal: Energy Conserving Descent (ECD): discretized physical evolution, 
without friction, nonetheless slowing near minimal F. Examples include:

Physical analogue: particle motion on potential energy V = F, with friction, discretized.

• BBI: relativistic, (speed limit)² = V = F-ΔV [or more general (speed limit)²= g(V)]
• Ruthless: non-relativistic, mass 1/g(V) 

No friction Energy Conservation favorable properties and improved calculability:

concrete formula for distribution of results: in all dims weighted toward small V = F-ΔV

[Image from Li et al. , '18]

+ other synthetics, PDEs,
small ML (Cifar, MNIST, 
Tiny ImageNet [new]),
chemistry, sampling [new]



Particle descending a potential energy landscape V

Force = mass × acceleration

Friction coefficient Energy not conserved

First-order form:

Discretization → GD with Momentum (GDM) + minibatches → SGDM

• Energy not conserved because of friction

• would conserve energy, but the particle 
flies quickly past V 0, spending very little time 
there (especially in high dimensions)

ECD: physical dynamics can conserve energy yet slow near V=0
Next: explicit realizations

Familiar law of motion:

Physics of 
GDM



Explicit realizations of ECD

Change the dynamics to conserve Energy E and favor V 0

General

Position vector
(parameters)

Momentum vector

Dynamical equations (cf. Newton's laws of motion):

1. BI: (speed limit)² = V = F-ΔV, [or general funcƟon g(V)]  

2. Rootless (Ruthless): mass 1/g(V)

• Slows as the particle gets heavy:

• Cannot exceed relativistic speed limit: [ES, Tong, Alishahiha '04, 
cf. França et al. '20]



Modest (~50) statistics and 
limited hyper-parameter tuning 
(without all the tweaks on 
either side); just a check of 
basic competence. "Bouncing" 
not required here.

Building ECD optimization algorithms

1. Discretize the continuum equations of motion
• e.g. BI with 

g(V) = V:

0. Choose the continuum dynamical system

2. Choose an initialization
• Common choice: Π(0) => E = V(0)
• Option: E > 0 => choice of Π(0) compatible with Energy eq.

3. Use discretized equation as update rules

4. Add other features
• Enforce strict Energy conservation rescaling Π
• Adaptive tuning of shift DV = F-V (next page)
• Option: random rotation of momenta ("bouncing", explained later)

5. Test it!



The value of the loss function F at the objective is not always known:

DV is a hyperparameter that can automatically adjust (recover from an
over-estimate). New upgrade to optimizer code.

Automatic (adaptive) Tuning of ΔV 

Given a too-high initial guess 
for ∆V, the loss extends to 
V = F − ∆V < 0 and the 
trajectory will jump to a small 
negative value V < 0 due to 
the discreteness. Conditioned 
on this, ∆V may be lowered, 
iteratively tuning it.

V=0

V

New 
V=0



Recap so far: • Optimization of an objective function F

• Descent dynamics as (discrete) physical evolution on a potential V = F-ΔV

• Equations of motion (update rules) obtained from a Hamiltonian H

• Gradient Descent with Momentum: a time-dependent H(P, Q, t)

• Alternative physics: Energy Conserving dynamical systems converging to V→0

• Energy not conserved:

• Simply removing friction (f =0) does not converge

• Discretization gives update rules → new optimization algorithms

Simple benchmarks show that the idea works: friction not needed for optimization.
Next: advantages of conserving energy

• Energy is conserved:
• 2 explicit examples: BI [relativistic], Ruthless [m = 1/g(V)].



• Phase space (positions & momenta) volume is preserved under the 
evolution.

• Past the mixing time, the probability to find a particle from a droplet (bundle 
of trajectories) in a region M of phase space is Vol(M)

Can get stuck in orbit at high V. Generically such orbits are unstable: chaos –
sensitive dependence on initial conditions – is typical in physical 
systems. Nearby trajectories disperse roughly on a mixing timescale.

Energy 
Conservation

Chaos and mixing has been 
proven in mathematical 
billiards problems.

[Image from Encyclopedia of 
Nonlinear Science, '04]

[Image from Dong, Yuan, Du et al. '19]

• Cannot stop unless V=E or V=0, so cannot stop in high local minimum

This inspires optional 
Bounces in BI algorithm above 
to reduce the mixing time
BBI



For ECD, phase space volume is strongly dominated near V=0:

• In contrast, pure momentum would not favor small V:

• The volume formula would not apply at all with friction (less 
predictive in that sense).

(g(V) also useful for sampling, in addition to optimization)
[GBDL, Roblik, Seljak, ES in progress]



• Enhancement of volume density for η>1 near a quadratic minimum V ~ θ²:

*ResNet-18, epochs: 100, batch size: 128, weight decay: 10⁻⁴, loss: Cross Entropy

m=1/V^η Accuracy Accuracy (weights averaged)

η=1 55.44 62.12

η=1.75 61.3 64.1

Protocol: lr = 0.01, no lr drop needed, 500 bounces,
Averaging of late-epoch weights (SWA)

• Small Tests on Tiny-ImageNet* with D. Kunin
(+ImageNet 1K in progress)

Exploiting the volume formula for image classification (preliminary)

[Izmailov et al. '19]
Training loss decreases 
monotonically with η, 
improving test accuracy for 
intermediate η>1

[ECD also > best comparable SGDM in cf. Li et al. '21, Tanaka, Kunin et al. '20...]

Compared with SGD: with lr drops 
(start 0.1, drop factor 0.1@ep. [30,60,80]) :

Accuracy: 62.52, Accuracy (weights averaged): 62.93
SGD: without lr drops is worse, as well as with loss → loss²

h=1

h=1.75
h=2.5

h=1.75
h=1.0
h=2.5



Testing the volume formula
Evaluated in different regions predicts distribution of results (given mixing)

For g(V) = V:

Near a minimum:

Empirical check:

V = 

Prediction of ratio 
of convergence:

Results:

Agreement 
within 10%

Bouncing trajectories 
find the 2 basins:



Behavior in shallow regions

Volume formula prefers flatter minima

Prediction: BI is faster on shallow directions than GD

Empirical check:

V = 10-dimensional Zakharov function 

Results:

Hyperparameters tuned with 
hyperopt

vs

ML lore: flatter minima generalize better



Avoiding high local minima

Energy conservation: ECD cannot stop in high local minima

Empirical check:

V = 2-dim Ackley function :

Highly non-convex function

Results:

Hyperoptimized fixed lr, and for GDM also 
momentum. GDM either stuck in initial basin or 
helped out by `catapult’ mechanism [Lewkowycz et 
al. ‘20], , then more erratic (not settling in global 
minimum).

BBI explores and 
finds the global 
minimum



Statements persist with noise (mini-batches) in our prescription:
BBI speed limit tamps down noise, while the bounces (when needed) provide 
controlled stochasticity for short mixing time.

Generalization ok:
speed limit kicks in for
V E, Vol(phase space) 
favors flat basins.

Summary comparison



Application: Solving Partial Differential Equations

• Most common strategy with ML tools: a NN as ansatz for the PDE:

1d slices of known 
solutions:

• We reverse-engineered hard (highly nonlinear) 2d PDEs with known multiple solution 
and checked if ECD optimization finds them

Found both from same initialization: bounces distribute results (mixing)

1d slices of learned 
solutions

Sol1: analytic Sol2: numerical

[Lagaris et al. '98, 
…, Raissi et al. '19,..]



Ongoing work:

• Larger scale Machine Learning experiments (with Kunin)
• Exploit the volume formula from frictionless dynamics for 

better generalization

• Efficient sampling from a function exp(-F) (with Robnik, Seljak)
• Reverse engineer g(V) such that

Future directions:

• Quantum Chemistry (with Zhang)
• Find the minimum energy configuration of a molecule

F = binding energy < 0 requires ΔV
• Automatic tuning tested successfully

• Feature learning theory and experiment
• Bounces along the directions of hidden layer parameters

• In contrast to Hamiltonian Monte Carlo, no momentum sampling needed  

Vol(phase space)=



Thank you!

[Robot: publicdomainvectors.org,
Hair: He, Shuhan. (2020). Albert Einstein. Zenodo. 
https://doi.org/10.5281/zenodo.3926055]


