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Overview: Optimization of an objective function F

» Data analysis/Machine Learning [F = loss]
* Solving (Partial) Differential Equations

[F = 2 (PDEs)?*+(boundary conditions)?]
* Many scientific applications [Image from Lietal., 18]

Gradient Descent with Momentum (GDM) can work well with modern tweaks.
Physical analogue: particle motion on potential energy V = F, with friction, discretized.

Our proposal: Energy Conserving Descent (ECD): discretized physical evolution,
without friction, nonetheless slowing near minimal F. Examples include:

* BBI: relativistic, (speed limit)? = V = F-AV [or more general (speed limit)?= g(V)]
* Ruthless: non-relativistic, mass « 1/g(V)

Ackley 2d (nonconvex) Zakharov 10d (shallow)
o + other synthetics, PDEs,
e [T e small ML (Cifar, MNIST,
- 1‘ o Tiny ImageNet [new]),
5 i Tk ke o v e i S— chemistry, sampling [new]

No friction = Energy Conservation = favorable properties and improved calculability:

concrete formula for distribution of results: in all dims weighted toward small V = F-AV



Physics of Particle descending a potential energy landscape V
GDM V(O)=Fr0O)-AV friction

Familiar law of motion: Force = mass x acceleration

VYV - fO=m6

Friction coefficient | = Energy not conserved

_ f
First-order form:  p=m® p=-p-——VV

Discretization - GD with Momentum (GDM) + minibatches - SGDM

2

 Energy E= ;—m +V(©) not conserved because of friction

« f=0 would conserve energy, but the particle
flies quickly past V=0, spending very little time
there (especially in high dimensions)

ECD: physical dynamics can conserve energy yet slow near V=0
Next: explicit realizations



Explicit realizations of ECD

Change the dynamics to conserve Energy E and favor V=0

General HO,I)=F
Position vector JL Momentum vector
(parameters)
. . : . O0H . 0H
Dynamical equations (cf. Newton's laws of motion): ©® = el II = — =

1. Bl: (speed limit)? = V = F-AV, [or general function g(V)]

H = Jg(v)(nz +9(V)) =g)/ |1 —%

[ES, Tong, Alishahiha '04,

- Cannot exceed relativistic speed limit: 0% < g(V) Franca et al. '20]

HZ
2m(V)

2. Rootless (Ruthless): mass « 1/g(V) H = ( ) = g(V) 112 = %m(V)G)Z

* Slows as the particle gets heavy: m(V) » o, g(V) - 0= 0% >0



Building ECD optimization algorithms
©. Choose the continuum dynamical system

1. Discretize the continuum equations of motion

V) = V: 2
B(V) VV(IV +7)=E

97;(75 -} At) — Qﬁ(t) = At Tfi(t-l-At)V(@(t))
2. Choose an initialization
« Common choice: NM(Q) => E = V(0)
* Option: E > @ => choice of MN(Q) compatible with Energy eq.
3. Use discretized equation as update rules

4. Add other features
* Enforce strict Energy conservation rescaling I
Adaptive tuning of shift AV = F-V (next page)

Option: random rotation of momenta ("bouncing", explained later)
5. Test it!

Modest (~50) statistics and

limited hyper-parameter tuning
DATA SET SGD BBI (without all the tweaks on
MNIST 99.166 , 98.160 99.177 , 99.190 either side); just a check of
CIFAR-10 92.628 , 92.655 92.434 , 92.435 basic competence. "Bouncing

not required here.



Automatic (adaptive) Tuning of AV

The value of the loss function F at the objective is not always known:
V=F-AV

AV is a hyperparameter that can automatically adjust (recover from an
over-estimate). New upgrade to optimizer code.

V

Given a too-high initial guess
for AV, the loss extends to
V=F-AV<0andthe
trajectory will jump to a small
V=0 ’} negative value V <0 due to
I the discreteness. Conditioned

New on this, AV may be lowered,
V=0 iteratively tuning it.




Recap so far: * Optimization of an objective function

* Descent dynamics as (discrete) physical evolution on a potential V = F-AV
* Equations of motion (update rules) obtained from a Hamiltonian H

e Gradient Descent with Momentum: a time-dependent H(I1, O, t)
; 112
* Energy not conserved: E = _fW <0

* Simply removing friction (f =0) does not converge

* Alternative physics: Energy Conserving dynamical systems converging to V-0
E = HECD(@, H)

* Energy is conserved: F =0
» 2 explicit examples: Bl [relativistic], Ruthless [m = 1/g(V)].

* Discretization gives update rules - new optimization algorithms

Simple benchmarks show that the idea works: friction not needed for optimization.
Next: advantages of conserving energy



Energy v

Conservation H=—"o=+/V(V+?) = E = constant —

e Cannot stop unless V=E or V=0, so cannot stop in high local minimum

Can get stuck in orbit at high V. Generically such orbits are unstable: chaos —
sensitive dependence on initial conditions — is typical in physical
systems. Nearby trajectories disperse roughly on a mixing timescale.

Chaos and mixing has been
proven in mathematical
billiards problems.

This inspires optional

0 . Bounces in Bl algorithm above
mage from Encyclopedia of

Nonlinear Science, '04] to reduce the mixing time =

BBI

[Image from Dong, Yuan, Du et al. '19]

* Phase space (positions & momenta) volume is preserved under the
evolution. Vol(phase space) = [ d™Od T16(H(I1,0) — E)

e Past the mixing time, the probability to find a particle from a droplet (bundle
of trajectories) in a region M of phase space is o« Vol(M)



* For ECD, phase space volume is strongly dominated near V=0:

n—2

n/2 27'('”/2 E E2 5
Vol = oy | “/ VA7) - B) = gy | 405 (7 - V)

/

Vn/z
For a basin V ~ |©|?%, this becomes ~ [ dQJ d|©]/|0|

ForV =0, Vol OCf = [ daf d|e||e|* !

n/z

V-g(V)~VT n>1 enhancesthe preferencefor V=0 (beats the effect of

high dimension n!) (g(V) also useful for sampling, in addition to optimization)

[GBDL, Roblik, Seljak, ES in progress]

* In contrast, pure momentum would not favor small V:
n_2 . . - . .
Vol(M) / d"0(E — V) =2 frictionless non-relativistic momentum

 The volume formula would not apply at all with friction (less
predictive in that sense).



Exploiting the volume formula for image classification (preliminary)

* Enhancement of volume density for n>1 near a quadratic minimum V ~ 6%

vol x [@*(1 =M ~14|0|

* Small Tests on Tiny-ImageNet™ with b. Kunin
(+ImageNet 1K in progress)

Protocol: Ir=0.01, no Ir drop needed, 500 bounces,

Averaging of late-epoch weights (SWA)

[lzmailov et al. '19]

10°

107!

Twmn=2.5

o 20000 40000 60000 80000

Training loss decreases
monotonically with n,
improving test accuracy for

m=1/V" | Accuracy Accuracy (weights averaged) intermediate n>1
n=1 55.44 62.12 .
n=1.75 61.3 64.1

Compared with SGD: with Ir drops
(start 0.1, drop factor 0.1@ep. [30,60,80]) :

Accuracy: 62.52, Accuracy (weights averaged): 62.93

SGD: without Ir drops is worse, as well as with loss = loss?
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[ECD also > best comparable SGDM in cf. Li et al. '21, Tanaka, Kunin et al. '20...]

*ResNet-18, epochs: 100, batch size: 128, weight decay: 1074, loss: Cross Entropy




Testing the volume formula

Evaluated in different regions predicts distribution of results (given mixing)

. 2 n/2 : ‘
For g(V) = V: VollMz) = s B / d (0 — 0V 2
Near a minimum: |
1 n , ’ 271_11/2 En—l )
V ~ V[ . 5 Z TT?,H(GZ' — 91.,;) VOI(MI) — b, (F(T?/?)) H, M IOO(VI) Vi—0

Bouncing trajectories
find the 2 basins:

Prediction of ratio Results:
of convergence: .
Agreement
VollMi) 1 93 o within 10%
Vol(My) . 0

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 4: Partial ratios.



Behavior in shallow regions

Volume formula prefers flatter minima e & :
P V~Vi+ 5 Z :rni-(f)z- — Bh-)‘)
ML lore: flatter minima generalize better =1

;)71_71/2 )Z En—1

log(Vi) Vi—0, m3;—0

V()I(MI) — bn (r(n/g) H: mr;

Prediction: Bl is faster on shallow directions than GD

O ~ e—mt/ﬁ VS O ~ e—mEtff
Empirical check:

V = 10-dimensional Zakharov function

Results:

10°
1074

> 1078
10—12
10—16

0 Hyperparameters tuned with

0 2000 4000 6000 8000 10000 hyperopt
Iteration

GDM BBI



Avoiding high local minima

Energy conservation: ECD cannot stop in high local minima

Empirical check: Highly non-convex function

V = 2-dim Ackley function :

Results:
101_
1o0] e e
1071
>
1072
10°3
104
0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration
GDM = GDM - small stepsize BBI
BBI explores and Hyperoptimized fixed Ir, and for GDM also
finds the global momentum. GDM either stuck in initial basin or
. helped out by ‘catapult’ mechanism [Lewkowycz et
mMinimum

al. 20], , then more erratic (not settling in global
minimum).



Summary comparison

ECD FRICTION ((S)GDM, ...)

CONSERVES ENERGY E FRICTION DRAINS E

CANNOT GET STUCK CAN STOP IN HIGH

IN HIGH LOCAL MINIMUM LOCAL MINIMUM

CANNOT OVERSHOOT CAN OVERSHOOT
V=0=VV YV =0= NV

DEPENDS ON V AND VV  DEPENDS ONLY ON VV

ON SHALLOW REGION: ON SHALLOW REGION:

0 ~ e~™H/V2 g~ e ™ ]

ANALYTIC PREDICTION STOCHASTIC INTUITION Generalization ok:
FOR DISTRIBUTION FOR DISTRIBUTION speed limit kicks in for

(GGENERALIZES (GENERALIZES

V < E, Vol(phase space)
favors flat basins.

Statements persist with noise (mini-batches) in our prescription:
BBI speed limit tamps down noise, while the bounces (when needed) provide
controlled stochasticity for short mixing time.



Application: Solving Partial Differential Equations

] [Lagaris et al. '98,
* Most common strategy with ML tools: a NN as ansatz for the PDE:  gaissietal 119, ]

F=V= Z PDE[N (z;0)]%2 + v Z BCIN (z;0)]2+ R(©)

redomain x Eboundary

* We reverse-engineered hard (highly nonlinear) 2d PDEs with known multiple solution
and checked if ECD optimization finds them

Sol1: analytic Sol2: numerical

1d slices of known
solutions:

-0.8 -0.4 0.4 0.8

1d slices of learned
solutions

Jeet nat
0.6-—Tv—suu!

M $

N 4 e ’

Ik FERIE R « NN
0.0- 3‘!' -10— & analytic

' v v ' ' " ' ' 0
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100

Found both from same initialization: bounces distribute results (mixing)



Ongoing work:

* Quantum Chemistry (with Zhang)
* Find the minimum energy configuration of a molecule 9
= binding energy <0 = requires AV o
e Automatic tuning tested successfully

* Larger scale Machine Learning experiments (with Kunin)
* Exploit the volume formula from frictionless dynamics for
better generalization

* Efficient sampling from a function exp(-F) (with Robnik, Seljak)
* Reverse engineer g(V) such that

Vol(phase space)= | d"l [ d"@ exp(-F)8(E — H(®, 1)) « [ d"Oexp(—F)

* In contrast to Hamiltonian Monte Carlo, no momentum sampling needed

Future directions:

* Feature learning theory and experiment
* Bounces along the directions of hidden layer parameters



Thank you!

=

[Robot: publicdomainvectors.org,
Hair: He, Shuhan. (2020). Albert Einstein. Zenodo.
https://doi.org/10.5281/zen0d0.3926055]



