Massively Parallel k-Means Clustering for Perturbation Resilient Instances

Vincent Cohen-addad Vahab Mirrokni Peilin Zhong Google Research

Euclidean k-Means Clustering

- Unsupervised learning
 - Partition points into k groups
 - Similar points are in the same group

- Euclidean k-means clustering
 - Input: n points $p_1, p_2, ..., p_n \in \mathbb{R}^d$
 - Goal: find centers $c_1, c_2, ..., c_k \in \mathbb{R}^d$ s.t. the clustering cost $\sum_{i \in [n]} \min_{j \in [k]} || p_i c_j ||_2^2$ is minimized

• Scalable parallel/distributed algorithms are desired to handle massive data

Massively Parallel Computation (MPC)

- MPC model
 - An abstraction of MapReduce
 - Sublinear local memory
 - Computation proceeds in rounds
 - Bounded communication
- Efficiency Measure
 - Number of rounds (parallel time)
 - Total space
 - Local memory

MPC k-Means Clustering

- Input: n-point set P in R^d distributed on several machines
- Output: k center points distributed on several machines
- Previous results
 - Small # of rounds & local space but large $\Omega(\log n)$ approximation
 - Small approximation factor & # of rounds but large $\Omega(k)$ local space
 - Small approximation factor & local space but large $\Omega(\log n)$ number of rounds
 - \circ O(1) approximation, o(log n) rounds, o(k) local space is impossible under certain conditions

• Our result

- Consider natural well-structured point set
- O(1) rounds, n^{δ} local space for any constant δ >0, 1+ ε approximation, near linear total space
- o If local space is $\Omega(k)$, the **exact** optimal k-means solution is obtained

Perturbation Resilient Instances

- α -Perturbation resilience $\rightarrow \alpha$ -center proximity
 - Let C be the optimal solution
 - If p is in a cluster with center $c \in C$, then $\alpha \cdot ||p c||_2 \le ||p c'||_2$ for any other center $c' \in C$

Our Techniques

- Candidate clusters via locality sensitive hashing (LSH)
 - \circ LSH \rightarrow near neighbor graph for different scales
 - \circ Optimal cluster \rightarrow connected component
 - \circ Candidate clusters \rightarrow Hierarchical tree structure

- O(1)-round dynamic programming over small depth tree
 - A novel task scheduling process via subtree generation

