

CRITEO

Al Lab



@()(\$)(0)

# A NEURAL TANGENT KERNEL PERSPECTIVE OF GANS

ICML 2022 - July 17th to 23rd, 2022

*J.-Y. Franceschi*,<sup>1,2</sup> *E. de Bézenac*,<sup>3,2</sup> I. Ayed,<sup>2,4</sup> M. Chen,<sup>5</sup> S. Lamprier,<sup>2</sup> P. Gallinari<sup>2,1</sup>

<sup>1</sup>Criteo AI Lab, Paris, France
<sup>2</sup>Sorbonne Université, CNRS, ISIR, F-75005 Paris, France
<sup>3</sup>Seminar for Applied Mathematics, D-MATH, ETH Zürich, Zürich-8092, Switzerland
<sup>4</sup>ThereSIS Lab, Thales, Palaiseau, France
<sup>5</sup>Valeo.ai, Paris, France

**ETH** zürich

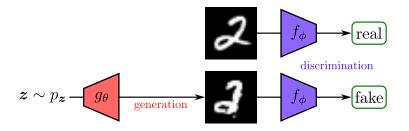
THALES

We solve fundamental flaws of GAN analyses via a theoretical framework based on NTKs.



## Principle

- The generator  $g_{\theta}$  generates a distribution  $\alpha_{\theta}$ , with target  $\beta$ .
- $g_{\theta}$  is trained in competition with a discriminator  $f_{\phi}$ .
- $g_{\theta}$  and  $f_{\phi}$  have conflicting objectives:
  - f aims at distinguishing between fake and target samples;
  - g should make fake and target samples indistinguishable for f.





• This is typically framed as, for some loss  $\mathcal{L}$ :

 $\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$ 



► This is typically framed as, for some loss *L*:

 $\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$ 

Many analyses solve the inner optimization problem and find that for some loss 𝒞 and optimal f<sub>φ<sup>±</sup><sub>a</sub></sub>:

$$\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}) = \inf_{\theta} \mathcal{L}(g_{\theta}, f_{\phi_{\theta}^{\star}}) \approx \inf_{\theta} \mathscr{C}(\alpha_{\theta}, \beta).$$

In vanilla GAN, 𝒞 is a Jensen-Shannon (JS) divergence.
In WGAN, 𝒞 is the earth mover's distance 𝒱<sub>1</sub>.



► This is typically framed as, for some loss *L*:

 $\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$ 

► Many analyses solve the inner optimization problem and find that for some loss *C* and optimal f<sub>φ<sup>\*</sup><sub>a</sub></sub>:

$$\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}) = \inf_{\theta} \mathcal{L}(g_{\theta}, f_{\phi_{\theta}^{\star}}) \approx \inf_{\theta} \mathscr{C}(\alpha_{\theta}, \beta).$$

In vanilla GAN, *C* is a Jensen-Shannon (JS) divergence.
In WGAN, *C* is the earth mover's distance *W*<sub>1</sub>.

• Gradient received by  $g_{\theta}$ :

$$\nabla_{\theta} \mathcal{L} \Big( g_{\theta}, f_{\phi_{\theta}^{\star}} \Big).$$



In practice, GANs are iteratively optimized as follows:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(g_{\theta}, f_{\phi}); \\ \phi \leftarrow \phi + \lambda \nabla_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$$

•  $f_{\phi}$  and  $g_{\theta}$  are considered to be independent of each other.



In practice, GANs are iteratively optimized as follows:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(g_{\theta}, f_{\phi}); \\ \phi \leftarrow \phi + \lambda \nabla_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$$

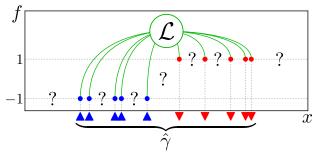
*f*<sub>φ</sub> and *g*<sub>θ</sub> are considered to be independent of each other.
Gradient received by *g*<sub>θ</sub>:

$$\nabla_{\theta} \mathcal{L} \left( g_{\theta}, f_{\phi_{\theta}^{\star}} \right) \qquad \Rightarrow \qquad \nabla_{\theta} \mathcal{L} \left( g_{\theta}, f_{\phi} \right).$$

#### Consequence

Altering the gradient changes the loss  ${\mathscr C}$  minimized by the generator.

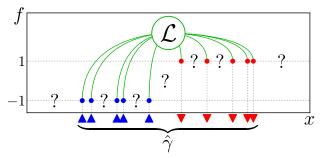




In an Alternating Optimization setting:

• Computing gradient of generator requires  $\nabla f$  (chain rule).

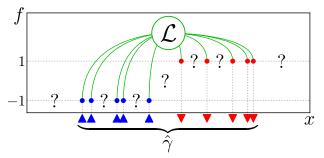




In an Alternating Optimization setting:

- Computing gradient of generator requires  $\nabla f$  (chain rule).
- Without any assumption on the structure of *f*, as loss *L* is only defined on training points, ∇*f* is not defined.

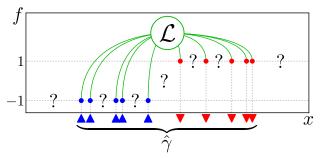




In an Alternating Optimization setting:

- Computing gradient of generator requires  $\nabla f$  (chain rule).
- Without any assumption on the structure of *f*, as loss *L* is only defined on training points, ∇*f* is not defined.
- ► The gradient of the generator is thus also ill-defined.





In an Alternating Optimization setting:

- Computing gradient of generator requires  $\nabla f$  (chain rule).
- Without any assumption on the structure of *f*, as loss *L* is only defined on training points, ∇*f* is not defined.
- ► The gradient of the generator is thus also ill-defined.
- ► Need to take into account structure of *f*.



## Problem

Most prior analyses fail to model practical GAN settings, leading to:

- > be unable to determine the true loss  $\mathscr{C}$ ;
- ill-defined gradient issues.

#### Our Work

We propose a *finer-grained* framework solving these issues, modeling the discriminator's architecture along with alternating optimization.



### Infinite-Width NTK Framework

- ▶ We consider the NNs in the NTK regime (Jacot et al., 2018).
- ► Allows theoretical analysis of evolution of NNs during training.



#### Infinite-Width NTK Framework

- ▶ We consider the NNs in the NTK regime (Jacot et al., 2018).
- ► Allows theoretical analysis of evolution of NNs during training.

## Theorem (Smoothness of the discriminator, Informal)

The discriminator trained with gradient descent is infinitely differentiable (almost) everywhere.

• Gradients of both the discriminator and generator well defined.

We analyze evolution of generated distribution  $\alpha_{\theta}$  during training:

- ▶ Follows Stein gradient flow w.r.t. loss 𝒞 (Duncan et al., 2019);
- ▶ *C* is automatically non-increasing during adversarial training;
- ▶ *C* can be analyzed theoretically; in particular:

We analyze evolution of generated distribution  $\alpha_{\theta}$  during training:

- ▶ Follows Stein gradient flow w.r.t. loss 𝒞 (Duncan et al., 2019);
- ▶ *C* is automatically non-increasing during adversarial training;
- ▶ *C* can be analyzed theoretically; in particular:

## GAN Loss for IPMs

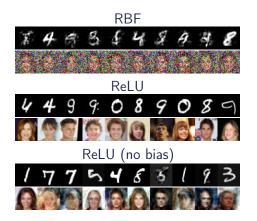
For the IPM loss,  ${\mathscr C}$  is the squared MMD with the NTK as kernel:

 $\mathscr{C}(\alpha_{\theta}, \beta) = \mathrm{MMD}_k^2(\alpha_{\theta}, \beta).$ 

## More results of this type in the paper!

# NTK-Based Framework: Empirical Analysis

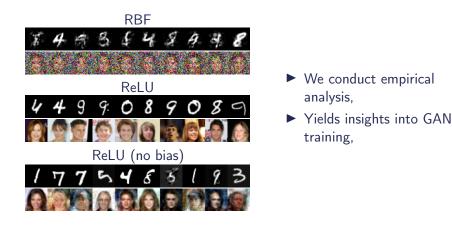




- We conduct empirical analysis,
- Yields insights into GAN training,

# NTK-Based Framework: Empirical Analysis





### Experimental Framework

Code: https://github.com/emited/gantk2.